首页 | 本学科首页   官方微博 | 高级检索  
     


Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis
Authors:Erickson David  Liu Xuezhu  Krull Ulrich  Li Dongqing
Affiliation:Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada.
Abstract:Biosensors and more specifically biochips exploit the interactions between a target analyte and an immobilized biological recognition element to produce a measurable signal. Systems based on surface nucleic acid hybridization, such as microarrays, are particularly attractive due to the high degree of selectivity in the binding interactions. One of the drawbacks of this reaction is the relatively long time required for complete hybridization to occur, which is often the result of diffusion-limited reaction kinetics. In this work, an electrokinetically controlled DNA hybridization microfluidic chip will be introduced. The electrokinetic delivery technique provides the ability to dispense controlled samples of nanoliter volumes directly to the hybridization array (thereby increasing the reaction rate) and rapidly remove nonspecific adsorption, enabling the hybridization, washing, and scanning procedures to be conducted simultaneously. The result is that all processes from sample dispensing to hybridization detection can be completed in as little as 5 min. The chip also demonstrates an efficient hybridization scheme in which the probe saturation level is reached very rapidly as the targets are transported over the immobilized probe site enabling quantitative analysis of the sample concentration. Detection levels as low as 50 pM have been recorded using an epifluorescence microscope.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号