首页 | 本学科首页   官方微博 | 高级检索  
     

基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型
引用本文:李波,顾冲时,李智录,张真真. 基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型[J]. 水利学报, 2008, 39(12)
作者姓名:李波  顾冲时  李智录  张真真
作者单位:河海大学,水利水电工程学院,江苏,南京,210098;河海大学水资源高效利用与工程安全国家工程研究中心,江苏,南京,210098;西安理工大学水利水电学院,陕西,西安,710048
基金项目:国家自然科学基金重点项目 , 国家自然科学基金 , 雅砻江水电开发联合研究基金项目 , 国家科技支撑计划项目 , 中国水电工程顾问集团公司科技项目  
摘    要:利用偏最小二乘回归法对影响大坝渗流的诸多因素进行分析,提取对因变量影响强的成分,克服了变量间的多重相关性问题,降低了最小二乘支持向量机的输入维数,从而可以较好的解决非线性问题,建立了基于PLS-LSSVM的大坝渗流监控模型。实例分析表明,PLS-LSSVM模型的拟合与预测精度均优于独立使用PLS或LSSVM建模的精度;PLS-LSSVM模型的学习训练效率比LSSVM模型有较大的优势,更适合于大规模的数据建模。

关 键 词:大坝渗流  偏最小二乘回归  最小二乘支持向量机  监控模型

Monitoring model for dam seepage based on partial least squares regression and partial least square support vector machine
LI Bo. Monitoring model for dam seepage based on partial least squares regression and partial least square support vector machine[J]. Journal of Hydraulic Engineering, 2008, 39(12)
Authors:LI Bo
Abstract:The partial least-squares regression method is applied to analyzed the factors affecting the dam seepage to extract the most important components.So that the problem of nultiple correlations can be solved and the number of input dimensions of least square support vector machine can be reduced to avoid the nonlinear problem happened to the application of least square support vector machine.On this basis,a monitoring model for dam seepage based on the combination of partial least-squares regression method with partial least square support vector machine is established.The application example shows that this model has higher precision and higher training efficiency than the models based on partial least-squares regression or partial least square support vectors machine alone.
Keywords:dam seepage  partial least-squares regression  least square support vector machine  monitoring model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水利学报》浏览原始摘要信息
点击此处可从《水利学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号