首页 | 本学科首页   官方微博 | 高级检索  
     

对数应变幂次强化本构模型研究
引用本文:王红卫,李育文,徐建国. 对数应变幂次强化本构模型研究[J]. 郑州轻工业学院学报(自然科学版), 2002, 17(1): 56-58
作者姓名:王红卫  李育文  徐建国
作者单位:郑州轻工业学院,机电科学与工程系,河南,郑州,450002
基金项目:河南省科技攻关项目 (99115 0 2 2 3)
摘    要:就有限压缩变形规律 ,对阿尔曼西应变和对数应变的适用性作了比较 .以铅的实验数据为例 ,采用对数应变—真应力描述给出了幂次强化本构方程 ,并在此基础上进行了有限元计算分析 .定出最佳回归参数 :强化系数B =10 0 0 ,强化指数n =0 0 6 2 5 2 .使用该方法得到的变形量与理论值非常接近 ,且叠代收敛次数少 ,计算效率高 ,计算过程适用于其他金属材料有限变形的研究

关 键 词:有限变形  本构方程  对数应变  叠代收敛
文章编号:1004-1478(2002)01-0056-03
修稿时间:2001-09-13

Study on logarithmic strain power hardening constitutional model
WANG Hong wei,LI Yu wen,XU Jian guo. Study on logarithmic strain power hardening constitutional model[J]. Journal of Zhengzhou Institute of Light Industry(Natural Science), 2002, 17(1): 56-58
Authors:WANG Hong wei  LI Yu wen  XU Jian guo
Abstract:In terms of the finite compression deformation law,the adaptability of Almanssi strain and the logarithmic strain is studied.Based on the lead compression test value,the power hardening constitutional equation based on logarithmic strain true stress configuration is presented,on the basis of this,the finite element calculation is done,and the optimal parameters are given:hardening coefficient B =1000,hardening exponent n =0.06252.The deformation numerical value by this method is in accordance with the theory,the iteration convergence numbers are decreased,therefore the calculating efficiency is higher,the calculating process is suitable for the finite compression deformation of other metals.
Keywords:finite deformation  constitutional equation  logarithmic strain  iteration convergence
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号