首页 | 本学科首页   官方微博 | 高级检索  
     


Bifunctional electrodes for an integrated water-electrolysis and hydrogen-oxygen fuel cell with a solid polymer electrolyte
Authors:J Ahn  R Holze
Affiliation:(1) Fachbereich Chemie, Carl von Ossietzky-Universität Oldenburg, Carl von Ossietzky Strasse 9-11, D-2900 Oldenburg, Germany
Abstract:An alternative concept of an integrated water electrolysis/hydrogen-hydrogen fuel cell using metal electrocatalysts and a solid polymer electrolyte is described. Instead of operating both electrodes as hydrogen and oxygen electrodes respectively the electrodes are used as oxidation and reduction electrodes in both modes of operation. A more suitable selection of electrocatalysts and an improved cell design are possible; both can increase the efficiency of the cell considerably. New results on the electrocatalytic activity of various noble-metal containing catalysts with respect to both oxygen evolution and hydrogen oxidation in a proton exchange membrane-cell at 80°C are reported. Kinetic data derived from Tafel plots of the oxygen evolution polarization curves agree closely with those of experiments with aqueous sulphuric acid electrodes. This agreement allows the determination of kinetic parameters for electrocatalysts difficult to prepare in solid smooth electrodes but easy to be made into porous deposits. Polarization curves of the hydrogen oxidation reaction clearly indicate a relative activity rating of the studied catalysts. In cycling tests the lifetime stability of the new bifunctional oxidation electrode was determined. Polarization data obtained under these conditions agree with those obtained in earlier experiments where electrodes were exposed to only one type of oxidation reaction. During a test of 10 cycles (30 min of electrolyser and 30 min of fuel cell mode each) no changes in the electrode potential were observed. With the conventional cell design employing a hydrogen and an oxygen electrode both catalyzed with platinum and a current density of 100 mA cm–2 a storage efficiency of 50% was calculated; with the alternative concept of oxidation and reduction electrodes and selected oxidation catalysts this was improved to 57%. With further improvements these efficiencies seem possible even at current densities of 500 mA cm–2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号