首页 | 本学科首页   官方微博 | 高级检索  
     

BP神经网络在湿法炼锌浸出工艺中的应用
引用本文:吉庆锋,李先柏,杨小中,廖舟,许彬,马荣骏. BP神经网络在湿法炼锌浸出工艺中的应用[J]. 矿冶工程, 2006, 26(6): 62-64
作者姓名:吉庆锋  李先柏  杨小中  廖舟  许彬  马荣骏
作者单位:金瑞新材料科技股份有限公司,湖南,长沙,410012;长沙矿冶研究院,湖南,长沙,410012
基金项目:国家自然科学基金资助项目(50374017)
摘    要:针对湿法炼锌浸出工艺中影响生产的因素, 利用BP神经网络技术和自适应变步长学习函数构造了一种新的神经网络模型, 提高了训练速度, 增强了网络的稳定性。结果表明, 该模型能比较准确的预测浸出率和终酸浓度。

关 键 词:湿法炼锌  浸出  BP神经网络  自适应变步长
文章编号:0253-6099(2006)06-0062-03
收稿时间:2006-06-26
修稿时间:2006-06-26

Application of BP Neural Network in Leaching Technology of Zinc Hydrometallurgy
JI Qing-feng,LI Xian-bo,YANG Xiao-zhong,LIAO Zhou,XU Bin,MA Rong-jun. Application of BP Neural Network in Leaching Technology of Zinc Hydrometallurgy[J]. Mining and Metallurgical Engineering, 2006, 26(6): 62-64
Authors:JI Qing-feng  LI Xian-bo  YANG Xiao-zhong  LIAO Zhou  XU Bin  MA Rong-jun
Affiliation:1. Kingray New Material Science and Technology Co Ltd, Changsha 410012, Hunan, China; 2. Changsha Research Institute of Mining and Metallurgy, Changsha 410012, Hunan, China
Abstract:To evaluate the impact of process parameters on the manufacturing in leaching process of zinc hydrometallurgy,a new type of neural network was founded based on the back-propagation neural network(BPNN) technology and self-adaptive variable step-size learning functions.The training speed was enhanced and the network stability was guaranteed.Applying this model,fairly precise results of leaching rate and final acid concentration can be predicted.
Keywords:zinc hydrometallurgy   leaching   BPNN    self-adaptive variable step-size
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《矿冶工程》浏览原始摘要信息
点击此处可从《矿冶工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号