首页 | 本学科首页   官方微博 | 高级检索  
     


Dead-space-based theory correctly predicts excess noise factor forthin GaAs and AlGaAs avalanche photodiodes
Authors:Saleh  MA Hayat  MM Saleh  BEA Teich  MC
Affiliation:Electro-Opt. Program, Dayton Univ., OH;
Abstract:The conventional McIntyre carrier multiplication theory for avalanche photodiodes (APDs) does not adequately describe the experimental results obtained from APDs with thin multiplication-regions. Using published data for thin GaAs and Al0.2Ga0.8As APDs, collected from multiplication-regions of different widths, we show that incorporating dead-space in the model resolves the discrepancy. The ionization coefficients of enabled carriers that have traveled the dead space are determined as functions of the electric field, within the confines of a single exponential model for each device, independent of multiplication-region width. The model parameters are determined directly from experimental data. The use of these physically based ionization coefficients in the dead-space multiplication theory, developed earlier by Hayat et al. provide excess noise factor versus mean gain curves that accord very closely with those measured for each device, regardless of multiplication-region width. It is verified that the ratio of the dead-space to the multiplication-region width increases, for a fixed mean gain, as the width is reduced. This behavior, too, is in accord with the reduction of the excess noise factor predicted by the dead-space multiplication theory
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号