首页 | 本学科首页   官方微博 | 高级检索  
     


Perfectly matched layers for frequency-domain integral equation acoustic scattering problems
Authors:Alles Erwin J  van Dongen Koen W A
Affiliation:Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands. E.J.Alles@tudelft.nl
Abstract:Simulations of acoustic wavefields in inhomogeneous media are always performed on finite numerical domains. If contrasts actually extend over the domain boundaries of the numerical volume, unwanted, non-physical reflections from the boundaries will occur. One technique to suppress these reflections is to attenuate them in a locally reflectionless absorbing boundary layer enclosing the spatial computational domain, a perfectly matched layer (PML). This technique is commonly applied in time-domain simulation methods like finite element methods or finite-difference time-domain, but has not been applied to the integral equation method. In this paper, a PML formulation for the three-dimensional frequency-domain integral-equation-based acoustic scattering problem is derived. Three-dimensional acoustic scattering configurations are used to test the PML formulation. The results demonstrate that strong attenuation (a factor of 200 in amplitude) of the scattered pressure field is achieved for thin layers with a thickness of less than a wavelength, and that the PMLs themselves are virtually reflectionless. In addition, it is shown that the integral equation method, both with and without PMLs, accurately reproduces pressure fields by comparing the obtained results with analytical solutions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号