首页 | 本学科首页   官方微博 | 高级检索  
     

正则化超限学习机的多分块松弛交替方向乘子法
引用本文:张立佳,赖晓平,曹九稳. 正则化超限学习机的多分块松弛交替方向乘子法[J]. 模式识别与人工智能, 2019, 32(12): 1107-1115. DOI: 10.16451/j.cnki.issn1003-6059.201912006
作者姓名:张立佳  赖晓平  曹九稳
作者单位:1.杭州电子科技大学 人工智能研究院 杭州 310018
基金项目:国家自然科学基金项目(No.61573123,61503104,U1909209)
摘    要:针对超限学习机在大数据环境下计算负担过重的问题,文中提出正则化超限学习机的多分块松弛交替方向乘子法及N-等分和N/2-等分情形的标量化实现.模型分块使算法具有高度的并行结构,与松弛技术结合提高算法的收敛速度.通过分析,建立算法收敛的充要条件,给出最优收敛率及最优参数.在基准数据集上仿真计算收敛率随分块数的变化关系,对比不同算法的收敛速率和GPU加速比.实验表明,文中算法具有较低的计算复杂度和较高的并行性.

关 键 词:机器学习  并行优化  超限学习机  交替方向乘子法  大数据  
收稿时间:2019-07-08

Multi-partition Relaxed Alternating Direction Method of Multipliers for Regularized Extreme Learning Machine
ZHANG Lijia,LAI Xiaoping,CAO Jiuwen. Multi-partition Relaxed Alternating Direction Method of Multipliers for Regularized Extreme Learning Machine[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(12): 1107-1115. DOI: 10.16451/j.cnki.issn1003-6059.201912006
Authors:ZHANG Lijia  LAI Xiaoping  CAO Jiuwen
Affiliation:1.Artificial Intelligence Institute, Hangzhou Dianzi University,Hangzhou 310018
Abstract:To address the issue of overly heavy computational load of extreme learning machine(ELM) in the big data environment, parallel optimization for ELM is studied. A multi-partition relaxed alternating direction method of multipliers(ADMM) for regularized ELM along with two scalarwise implementations in the N- and N/2-equipartition cases is proposed. By the multi-partition, the proposed algorithm has a highly parallel structure and the combination with relaxation technique improves the convergence rate of the proposed algorithm. Through analysis, a necessary and sufficient convergence condition is established, and optimal convergence ratio and optimal parameters are obtained. Through simulations on bench-mark datasets, the relationship between the convergence ratio and the number of partitioned blocks is calculated, and convergence rates and GPU acceleration ratios of different algorithms are compared. Experimental results demonstrate that the proposed algorithm has low computational complexity and high parallelism.
Keywords:Machine Learning  Parallel Optimization  Extreme Learning Machine  Alternating Direction Method of Multipliers  Big Data  
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号