首页 | 本学科首页   官方微博 | 高级检索  
     

基于应力分析Ni-Fe合金支撑固体氧化物燃料电池结构稳定性研究
引用本文:李凯,李霄,李箭,谢佳苗. 基于应力分析Ni-Fe合金支撑固体氧化物燃料电池结构稳定性研究[J]. 无机材料学报, 2019, 34(6): 611-617. DOI: 10.15541/jim20180398
作者姓名:李凯  李霄  李箭  谢佳苗
作者单位:西安石油大学 材料科学与工程学院, 西安 710065
华中科技大学 材料科学与工程学院, 材料成型及模具技术国家重点实验室, 武汉 430074
西北工业大学 工程力学系, 西安 710065
基金项目:国家自然科学基金青年科学基金项目(51702258);华中科技大学材料成型与模具技术国家重点实验室开放课题研究基金(P2017-005);陕西省教育厅专项科研计划项目(17JK0598)
摘    要:本文以NiO和Fe2O3为原料, 应用流延、丝网印刷、高温共烧结和原位还原的工艺制备多孔金属支撑固体氧化物燃料电池(MS-SOFC)。系统研究了支撑体中Fe含量对MS-SOFC的残余应力、抗弯断裂强度和电化学稳定性的影响。结果表明, 在NiO中加入10at% Fe2O3, 使得支撑体致密化开始温度提高到937 ℃, 残余应力和变形翘曲度分别低至70 MPa和0.15 mm; 电池还原之后, Ni0.9Fe0.1支撑SOFC骨架表面孔隙率为40.22%, 抗弯断裂强度达到最大值62.34 MPa; 电化学测试过程中, Ni0.9Fe0.1支撑SOFC在650 ℃下, 以H2为燃料, 在400 mA·cm -2电流密度下可以稳定运行60 h, 主要因为电池具有较高的抗弯断裂强度, 能够抵抗运行过程中的热应力。该研究工作为MS-SOFC结构设计和性能稳定性优化提供重要的理论依据。

关 键 词:金属支撑固体氧化物燃料电池  Ni-Fe合金支撑体  热应力  
收稿时间:2018-09-03
修稿时间:2018-11-12

Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis
Kai LI,Xiao LI,Jian LI,Jia-Miao XIE. Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis[J]. Journal of Inorganic Materials, 2019, 34(6): 611-617. DOI: 10.15541/jim20180398
Authors:Kai LI  Xiao LI  Jian LI  Jia-Miao XIE
Affiliation:School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China;
State Key Laboratory for Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710065, China;
Abstract:Metal supported solid oxide fuel cells (MS-SOFCs) were fabricated with NiO and Fe2O3 by tape casting, screen printing, sintering and in-situ reducing process with NiO and Fe2O3. The fraction effects of Fe on residual stress, bending strength and electrochemical stability of MS-SOFC were systematically investigated. The addition of 10at% Fe2O3 in characteristic support elevated densification starting temperature up to 937 ℃, and reduced residual stress and buckling deformation to 70 MPa and 0.15 mm, respectively. After reduction, Ni0.9Fe0.1supported SOFC presented the maximum bending strength of 62.34 MPa due to the lowest porosity of 40.22% in metal scaffold. MS-SOFC steadily operated for 60 h in durability test with H2 as the fuel at a constant current density of 400 mA·cm -2 and 650 ℃. This superior performance was attributed to the higher fracture strength of Ni0.9Fe0.1 alloy support SOFC, which effectively resisted the thermal stress in operation. This research provides a promising theoretical basis for structure design and optimization of MS-SOFC.
Keywords:metal supported solid oxide fuel cell  Ni-Fe alloy support  thermal stress  
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号