首页 | 本学科首页   官方微博 | 高级检索  
     

200t提钒复吹转炉氧枪喷头优化
引用本文:周振宇,唐萍,周遵传,侯自兵,文光华.200t提钒复吹转炉氧枪喷头优化[J].钢铁,2019,54(9):50-56.
作者姓名:周振宇  唐萍  周遵传  侯自兵  文光华
作者单位:重庆大学材料科学与工程学院,重庆,400044;攀钢集团西昌钢钒有限公司提钒炼钢厂,四川西昌,615000
摘    要: 针对攀钢西昌钢钒200 t提钒复吹转炉在底吹布置一定的条件下,通过优化顶吹氧枪喷头的结构来增加熔池搅混能力的问题,采用物理模拟的方法在顶吹流量一定的条件下优化了氧枪喷头尺寸参数(包括喷孔夹角、喷孔数和马赫数Ma),并进行了工业性应用。结果表明,反映熔池搅拌能的混匀时间随喷孔夹角减小先减小后增大,在喷孔夹角为12°时最小;反映熔池液面活跃度的1/3大波波高随喷孔夹角减小先增大后减小,在喷孔夹角为12°时最大。5孔喷头混匀时间比4孔减小1.88%,波高减小3.35%,熔池中死区增大。Ma数为2.10和2.20的喷头比Ma数为1.99的喷头混匀时间分别减小7.36%和14.31%,波高分别增加8.68%和14.57%。3种参数对熔池搅拌影响程度的排序为Ma数>喷孔夹角>喷头孔数,且在底吹流量低时更为显著。工业应用结果表明,底吹效果差时优化喷头(4孔喷孔夹角为12°,Ma数为2.10)的应用加强了熔池反应的动力学条件,使半钢残w([V])降低18.8%,残钒合格炉次(不大于0.05%)比例提升26.7%,钒渣w((V2O5))增加了6.5%,w((TFe)) 降低了6.6%,达到了良好的冶金效果。

关 键 词:提钒复吹转炉  氧枪喷头  物理模拟  混匀时间  工业应用

Optimization on nozzle parameters of 200 t combined blowing vanadium extraction converter
ZHOU Zhen yu,TANG Ping,ZHOU Zun chuan,HOU Zi bing,WEN Guang hua.Optimization on nozzle parameters of 200 t combined blowing vanadium extraction converter[J].Iron & Steel,2019,54(9):50-56.
Authors:ZHOU Zhen yu  TANG Ping  ZHOU Zun chuan  HOU Zi bing  WEN Guang hua
Affiliation:(1. School of Material Science and Engineering, Chongqing University, Chongqing 400044, China;2. Vanadium Refining and Steel Plant, Pangang Group Xichang Steel and Vanadium Co., Ltd., Xichang 615000, Sichuan, China)
Abstract:Enhancing the mixing capability of top blowing on 200 t combined blowing vanadium extraction converter by optimizing the performance of oxygen lance nozzle was focused,and a physical simulation system was built to optimize the angle,hole number and Ma number of nozzles by studying their effects on the molten pool stirring in various lance height and bottom blowing flux. The results showed that the mixing time decreased and the 1/3 big wave height increased with the hole angle decreasing first, and these two laws turned to opposite trend when the angle was 12°. The mixing time of 12° nozzle was 4.17% smaller than that of original 13° nozzle, and the 1/3 big wave height was 4.21% bigger. The mixing time and the 1/3 big wave height of the 5 hole nozzle case were 1.88% and 3.35% smaller than those of the 4 hole nozzle case respectively, and conductivity measurements showed there existed a dead zone in the molten pool of the 5 hole nozzle case. The mixing time of the nozzle with Ma number 2.10 and 2.20 were 7.36% and 14.31% smaller than those of the nozzle with Ma number 1.99, and the 1/3 big wave height were 8.68% and 14.75% bigger. The order of the affection extent of each parameter was as follow, Ma number> Nozzle hole angle> Nozzle hole number. The optimization results turned to be more outstanding when the bottom blowing flow rate remains low. The industrial application of the optimized nozzle (with 4 hole, 12° and Ma number 2.10) showed the residual w([V]) in semi steel reduced by 18.8%, the percent of heats with residual w([V]) ≤0.05% increased by 26.7%, w((V2O5)) in the slag increased by 6.5% and w((TFe)) decreased by 6.6%.
Keywords:V-extractioncombined blowing converter  nozzle  physical simulation  mixing time  industrial application  
本文献已被 万方数据 等数据库收录!
点击此处可从《钢铁》浏览原始摘要信息
点击此处可从《钢铁》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号