首页 | 本学科首页   官方微博 | 高级检索  
     

基于区间阴影集的密度峰值聚类算法
引用本文:陈玉洪,张清华,杨洁. 基于区间阴影集的密度峰值聚类算法[J]. 模式识别与人工智能, 2019, 32(6): 531-544. DOI: 10.16451/j.cnki.issn1003-6059.201906006
作者姓名:陈玉洪  张清华  杨洁
作者单位:1.重庆邮电大学 计算智能重庆市重点实验室 重庆 400065
基金项目:国家自然科学基金项目(No.61876201)资助
摘    要:为了减小模糊集及其诱导的经典阴影集之间存在的较大的不确定性差异,文中基于模糊熵提出阴影集模型区间阴影集。由此提出基于区间阴影集的密度峰值聚类算法,优化经典密度峰值聚类算法的噪声检测策略.改进算法在原二支聚类结果的基础上摒弃原有检测策略,引入区间阴影集模型,并转化为三支聚类结果,达到噪声检测的目的。在经典人工数据集、UCI 数据集上的对比实验表明,文中算法能将数据集中对象更合理地分配到相应类簇,对噪声数据具有良好的鲁棒性。

关 键 词:模糊集  阴影集  三支决策  局部密度  密度峰值
收稿时间:2019-03-22

Density Peak Clustering Algorithm Based on Interval Shadowed Sets
CHEN Yuhong,ZHANG Qinghua,YANG Jie. Density Peak Clustering Algorithm Based on Interval Shadowed Sets[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(6): 531-544. DOI: 10.16451/j.cnki.issn1003-6059.201906006
Authors:CHEN Yuhong  ZHANG Qinghua  YANG Jie
Affiliation:1.Chongqing Key Laboratory of Computational Intelligence, Chong-qing University of Posts and Telecommunications, Chongqing 400065
Abstract:To narrow the discrepancy between a fuzzy set and its induced shadowed set, a shadowed set model, interval shadowed set, is proposed based on fuzzy entropy. Grounded on the interval shadowed set model, an improved density peak clustering algorithm is proposed to optimize the noise detection strategy of the classical algorithm. To detect the noise, the two-way clustering result of classical algorithm is transformed into three-way clustering result by introducing interval shadowed set model. Finally, comparison experiments on classical artificial datasets and UCI datasets show that the improved algorithm distributes the objects of any dimension and scale more reasonably to the corresponding clusters, and it has good robustness to noise data.
Keywords:Fuzzy Set  Shadowed Set  Three-Way Decision  Local Density  Density Peak  
本文献已被 维普 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号