首页 | 本学科首页   官方微博 | 高级检索  
     

基于CapsNet的汉字字形表征模型
引用本文:谢海闻,叶东毅,陈昭炯. 基于CapsNet的汉字字形表征模型[J]. 模式识别与人工智能, 2019, 32(2): 169-176. DOI: 10.16451/j.cnki.issn1003-6059.201902009
作者姓名:谢海闻  叶东毅  陈昭炯
作者单位:1.福州大学 数学与计算机科学学院 福州 350108
基金项目:国家自然科学基金项目(No.61672158)、福建省自然科学基金项目(No.2018J1798)、福建省高校产学合作项目(No.2018H6010)资助
摘    要:提出基于胶囊神经网络(CapsNet)的汉字字形表征模型,通过表征汉字字形中的部件实现汉字字形的表征.首先,对任一汉字字形生成所有部件类别的表征向量.然后,根据部件存在概率,利用基于欧氏距离的离群点检测,选取相应的部件表征向量.最后,由选出的部件表征向量组成该汉字的字形表征.实验表明,文中模型在仅经过部件字形训练的情况下,即可有效识别汉字部件,同时自动生成汉字字形的有效表征.

关 键 词:汉字字形  胶囊神经网络(CapsNet)  表征模型  部件识别  汉字字形重构
收稿时间:2018-05-23

CapsNet-Based Chinese Character Font Representation Model
XIE Haiwen,YE Dongyi,CHEN Zhaojiong. CapsNet-Based Chinese Character Font Representation Model[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(2): 169-176. DOI: 10.16451/j.cnki.issn1003-6059.201902009
Authors:XIE Haiwen  YE Dongyi  CHEN Zhaojiong
Affiliation:1.College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108
Abstract:A CapsNet-based Chinese character font representation model is proposed to represent Chinese character font by the representation of components. Firstly, representative vectors of all categories are generated by the model. Then, a group of component representative vectors are selected by the Euclidean-distance-based outlier detection according to component probabilities. Finally, these vectors are utilized to form the Chinese character font representations. The experimental results show that the proposed model, merely trained on component fonts, is capable of identifying components of Chinese characters and automatically generating effective representation of Chinese characters.
Keywords:Chinese Character Font  Capsule Network(CapsNet)  Representation Model  Component Identification  Chinese Character Font Reconstruction  
本文献已被 维普 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号