首页 | 本学科首页   官方微博 | 高级检索  
     

按风格划分数据的模糊聚类算法
引用本文:沈浩,王士同. 按风格划分数据的模糊聚类算法[J]. 模式识别与人工智能, 2019, 32(3): 204-213. DOI: 10.16451/j.cnki.issn1003-6059.201903002
作者姓名:沈浩  王士同
作者单位:1.江南大学 数字媒体学院 无锡 214122
基金项目:国家自然科学基金项目(No.61572236)资助
摘    要:以K-means和模糊C均值为代表的划分式聚类算法无法有效处理按照风格为标准划分样本的聚类任务.针对此问题,文中提出按风格划分数据的模糊聚类算法.利用风格标准化矩阵表示包含在类簇中样本的风格信息,同时使用逼近标准风格之后的样本计算距离矩阵,并以隶属度表示样本点对于类簇的可代表程度.通过常用的交替优化策略同时优化隶属度矩阵和风格标准化矩阵.文中算法可以有效利用样本的风格信息和样本点与类簇之间的关系信息,在人工数据集和真实数据集上的实验表明算法的有效性.

关 键 词:糊聚类  风格化数据  风格信息  模糊风格划分
收稿时间:2018-12-18

A Fuzzy Style Clustering Algorithm on Stylistic Data
SHEN Hao,WANG Shitong. A Fuzzy Style Clustering Algorithm on Stylistic Data[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(3): 204-213. DOI: 10.16451/j.cnki.issn1003-6059.201903002
Authors:SHEN Hao  WANG Shitong
Affiliation:1.School of Digital Media, Jiangnan University, Wuxi 214122
2. Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi 214122
Abstract:In the stylistic data, different organizational styles obviously or implicitly exist in different clusters. The classical partitional clustering methods represented by K-means and fuzzy C-means are ineffective for the stylistic data. Therefore, a fuzzy style clustering(FSC) is proposed. A style normalization matrix is utilized to represent the style information of the samples within each cluster, and the distance matrix is calculated with samples transformed by style normalization matrices. Besides, the fuzzy membership is exploited to describe the representable degree of a sample for a certain cluster. The membership matrix and style normalization matrix are optimized simultaneously by the commonly-used alternating optimization technique. FSC can make use of the style information of samples and the information between samples and clusters effectively, and the experimental results on synthetic and real datasets indicate the effectiveness of the proposed algorithm.
Keywords:Fuzzy Clustering Algorithm  Stylistic Data  Style Information  Fuzzy Style Clustering  
本文献已被 维普 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号