首页 | 本学科首页   官方微博 | 高级检索  
     


Surface modification of basic copper carbonate by mechanochemical processing with sulfur and ammonium sulfate
Affiliation:1. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China;2. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 9 980-8577, Japan
Abstract:Mechanochemical phenomena including mechanical activation and direct reaction have been widely observed particularly from dry grinding operation and various applications of the phenomena have been reported in many fields of chemistry. A new approach was introduced here to trigger partial reaction by co-grinding samples with small addition of water/liquid to achieve the purpose of surface modification with new phase formed. As one example, basic copper carbonate was wet ground with elemental sulfur and appropriate additives such as ammonium sulfate to transform the surface chemical composition from oxide to sulfide. Physicochemical characterizations of the prepared samples were conducted by a set of analytical methods, including X-ray diffraction analysis, Fourier Transform infrared spectroscopy, Raman spectroscopic analysis, SEM morphology analysis, Zeta potential and the dissolved copper concentration measurement. The beneficiation efficiency of the modified copper carbonate by a conventional froth flotation used usually for sulfide minerals was examined as a quantitative evaluation to optimize the experimental conditions for the modification operation. A metal yield over 80% was obtained easily after one step concentrating of the flotation operation, indicating that mechanochemically surface controlling concept may serve as a novel pathway to enrich and recycle carbonate-style nonferrous resources by applying the traditional mineral processing technology on the modified samples.
Keywords:Surface modification  Mechanochemistry  Sulfidization  Ammonium sulfate  Metal recycling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号