首页 | 本学科首页   官方微博 | 高级检索  
     

一种快速鲁棒核空间图形模糊聚类分割算法
引用本文:吴其平,吴成茂. 一种快速鲁棒核空间图形模糊聚类分割算法[J]. 智能系统学报, 2019, 14(4): 804-811. DOI: 10.11992/tis.201806045
作者姓名:吴其平  吴成茂
作者单位:西安邮电大学 电子工程学院, 陕西 西安 710121
基金项目:国家自然科学基金项目(61671377,51709228);陕西省自然科学基金项目(2017JM6107);西安邮电大学研究生创新基金项目(CXL2016-14)
摘    要:针对现有鲁棒图形模糊聚类算法难以满足强噪声干扰下大幅面图像快速分割的需要,提出一种快速鲁棒核空间图形模糊聚类分割算法。该算法将欧氏空间样本通过核函数映射至高维空间;采用待分割图像中像素邻域的灰度和空间等信息构建线性加权滤波图像,对其进行鲁棒核空间图形模糊聚类;并引入当前聚类像素与其邻域像素均值所对应的二维直方图信息,获得鲁棒核空间图形模糊聚类快速迭代表达式。对大幅面图像添加高斯和椒盐噪声进行分割测试,实验结果表明:本文算法相比基于图形模糊聚类等分割算法的分割性能、抗噪鲁棒性和实时性有了显著提高。

关 键 词:图像分割  图形模糊聚类  核函数  线性加权和图像  邻域滤波  二维直方图  聚类有效性  鲁棒性

A fast and robust clustering segmentation algorithm for kernel space graphics
WU Qiping,WU Chengmao. A fast and robust clustering segmentation algorithm for kernel space graphics[J]. CAAL Transactions on Intelligent Systems, 2019, 14(4): 804-811. DOI: 10.11992/tis.201806045
Authors:WU Qiping  WU Chengmao
Affiliation:School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
Abstract:Addressing the existing problem of difficulty in realizing fast segmentation of large-scale images under strong noise interference, a fast robust kernel space graph fuzzy clustering segmentation algorithm is proposed. This algorithm first mapped the samples in European Space to the high dimensional feature space through the kernel function; subsequently, it constructed the linear weighted filtering image using the gray scale and spatial information of the pixel neighborhood in the image to be segmented and carried out the robust kernel space pattern fuzzy clustering on the image. The fast iterative expression of robust kernel space graph fuzzy clustering was obtained by introducing the two-dimensional histogram information corresponding to the mean value of the current clustering pixel and its neighboring pixels. Experimental test results of large size images interrupted by Gaussian and salt-and-pepper noise show that the segmentation, robustness, and real-time performance of the proposed segmentation algorithm have improved more significantly than those of the picture-based fuzzy clustering, and other fuzzy clustering segmentation algorithms.
Keywords:image segmentation   graph fuzzy clustering   kernel function   linear weighted image   neighborhood filtering   two-dimensional histogram   clustering validity   robustness
本文献已被 维普 等数据库收录!
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号