首页 | 本学科首页   官方微博 | 高级检索  
     

多特征融合的图像质量评价方法
引用本文:贾惠珍,王同罕,傅鹏. 多特征融合的图像质量评价方法[J]. 模式识别与人工智能, 2019, 32(7): 669-675. DOI: 10.16451/j.cnki.issn1003-6059.201907011
作者姓名:贾惠珍  王同罕  傅鹏
作者单位:1.东华理工大学 江西省放射性地学大数据技术工程实验室南昌 330013
2.南京理工大学 计算机科学与工程学院 南京 210094
基金项目:国家自然科学基金项目(No.61762004)、江西省教育厅科学技术研究项目(No. GJJ170455)、东华理工大学江西省放射性地学大数据技术工程实验室开放基金项目(No.JELRGBDT201702)、东华理工大学博士启动基金项目(No.DHBK2016119,DHBK2016120)资助
摘    要:为了规避图像质量评价中的视觉特征和池化策略难以选取和解释的问题,在提取参考图像和失真图像的多种底层特征的基础上,采用机器学习的方法自动预测真实图像质量,提出多特征融合的图像质量评价方法.针对参考图像和失真图像分别提取相位一致性、梯度、视觉显著性、对比度特征,计算4种特征的相似度图,提取相似度图的均值和方差特征,最后采用支持向量回归评价文中方法.在LIVE、CSIQ、TID2008和TID2013图像库上的实验表明,文中方法的主客观一致性较好.

关 键 词:底层特征相似度图  统计特征  池化  支持向量机
收稿时间:2018-11-28

Multi-feature Fusion Based Image Quality Assessment Method
JIA Huizhen,WANG Tonghan,FU Peng. Multi-feature Fusion Based Image Quality Assessment Method[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(7): 669-675. DOI: 10.16451/j.cnki.issn1003-6059.201907011
Authors:JIA Huizhen  WANG Tonghan  FU Peng
Affiliation:1.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013
2.School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094
Abstract:To avoid the difficulties in choosing and explaining the visual features and pooling strategies in image quality assessment, a reference images quality assessment method based on multi-feature fusion is proposed. Various underlying features of reference and distorted images are extracted,and a machine learning method is applied to predict the quality of real images. Firstly, phase congruency, gradient, visual saliency and contrast of reference and distorted images are extracted. Then similarity maps of four features are calculated, respectively. The mean and variance characteristics of these similarity maps are extracted. Finally, the assessment model is learned by support vector regression. The experimental results on four benchmark databases demonstrate a high coherence between subjective and objective assessment by the proposed method.
Keywords:Low-level Feature Similarity Map   Statistical Features   Pooling   Support Vector Machine  
本文献已被 维普 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号