首页 | 本学科首页   官方微博 | 高级检索  
     

基于模板校正与低秩分解的纺织品瑕疵检测方法
引用本文:纪旋,梁久祯,侯振杰,常兴治,刘威. 基于模板校正与低秩分解的纺织品瑕疵检测方法[J]. 模式识别与人工智能, 2019, 32(3): 268-277. DOI: 10.16451/j.cnki.issn1003-6059.201903008
作者姓名:纪旋  梁久祯  侯振杰  常兴治  刘威
作者单位:1.常州大学 信息科学与工程学院 常州 213164
基金项目:国家自然科学基金项目(No.61170121)资助
摘    要:针对周期性纺织品存在的拉伸变形问题,提出结合模板校正与低秩分解的纺织品瑕疵检测方法.首先对原图像进行模板校正,减少图像拉伸变形对检测结果的影响.然后提出低秩校正分解模型,包含低秩项、稀疏项和校正项,通过交替方向法优化求解,生成低秩矩阵和稀疏矩阵.最后利用最优阈值分割算法,分割由稀疏矩阵产生的显著图,完成瑕疵检测.在标准数据库上的实验表明,文中方法的查全率有所提高.

关 键 词:周期性纺织品  模板校正  低秩分解  瑕疵检测
收稿时间:2018-10-23

Fabric Defect Detection Based on Template Correction and Low-Rank Decomposition
JI Xuan,LIANG Jiuzhen,HOU Zhenjie,CHANG Xingzhi,LIU Wei. Fabric Defect Detection Based on Template Correction and Low-Rank Decomposition[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(3): 268-277. DOI: 10.16451/j.cnki.issn1003-6059.201903008
Authors:JI Xuan  LIANG Jiuzhen  HOU Zhenjie  CHANG Xingzhi  LIU Wei
Affiliation:1.School of Information Science and Engineering, Changzhou University, Changzhou 213164
Abstract:To solve the problem of tensile deformation of periodic fabric, a fabric defect detection method based on template correction and low-rank decomposition is proposed. Firstly, the original image is corrected by the template to reduce the influence of stretching deformation on the detection results. Then, a low-rank correction decomposition model is proposed including a low-rank term, sparse term and correction term. The model can be solved by the alternating direction method to generate a low-rank matrix and a sparse matrix. Finally, the optimal threshold segmentation algorithm is utilized to segment the significant images generated by the sparse matrix. Experiments on standard databases show that the recall rate of the proposed method is improved.
Keywords:Fabric with Periodic Pattern  Template Correction  Low-Rank Decomposition  Defect Detection  
本文献已被 维普 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号