首页 | 本学科首页   官方微博 | 高级检索  
     

面向属性抽取的门控动态注意力机制
引用本文:程梦,洪宇,唐建,张家硕,邹博伟,姚建民. 面向属性抽取的门控动态注意力机制[J]. 模式识别与人工智能, 2019, 32(2): 184-192. DOI: 10.16451/j.cnki.issn1003-6059.201902011
作者姓名:程梦  洪宇  唐建  张家硕  邹博伟  姚建民
作者单位:1.苏州大学 计算机科学与技术学院 苏州 215006
基金项目:国家重点研发计划项目(No.2017YFB1002104)、国家自然科学基金项目(No.61672367,61672368)资助
摘    要:在现阶段属性抽取研究中,现有注意力建模及训练较刚性(单句一次成型),而单句中不同词汇的上下文存在语境语义的差异,一致的注意力分布缺少动态的适应性.因此,文中提出面向属性抽取的门控动态注意力机制,利用双向长短时记忆网络捕获目标句中每个单词的隐层表示.在注意力模型处理词一级属性预测时,根据目标词及其上下文,计算适应该目标词的注意力分布向量,可以根据上下文的变化自动调整注意力权重的分配.借助门控调整注意力向量流向下一层神经元的信息量,最终使用条件随机场进行属性标记.应用2014-2016语义评估官方数据集验证文中方法的有效性,F1值均有所提高.

关 键 词:注意力机制  属性抽取  条件随机场  情感分析
收稿时间:2018-10-21

Gated Dynamic Attention Mechanism towards Aspect Extraction
CHENG Meng,HONG Yu,TANG Jian,ZHANG Jiashuo,ZOU Bowei,YAO Jianmin. Gated Dynamic Attention Mechanism towards Aspect Extraction[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(2): 184-192. DOI: 10.16451/j.cnki.issn1003-6059.201902011
Authors:CHENG Meng  HONG Yu  TANG Jian  ZHANG Jiashuo  ZOU Bowei  YAO Jianmin
Affiliation:1.School of Computer Science and Technology, Soochow University, Suzhou 215006
Abstract:In the current aspect extraction researches, the attention modeling and training are fixed, and the sentence is modeled in one time step. However, the semantics of the words vary in contexts, and a fixed attention distribution lacks dynamic adaptability. Therefore, a gated dynamic attention mechanism towards aspect extraction is proposed in this paper. A bidirectional long short term memory network is exploited to obtain hidden representations of words in a target sentence. Then, a specific attention distribution is computed according to the target word and its context while the attention model labelling words. Thus, the attention-weight distribution can be automatically adjusted according to the changes of contexts. Next, a gate is adopted to adjust the quantities of information flowing to the next units. Finally, conditional random field is utilized to label the aspect. The official datasets of 2014-2016 semantic evaluation are employed to verify the effectiveness of the proposed method, and F1 scores are increased.
Keywords:Attention Mechanism  Aspect Extraction  Conditional Random Field  Sentiment Analysis  
本文献已被 维普 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号