首页 | 本学科首页   官方微博 | 高级检索  
     

核级SA-508 Gr.3 Cl.1材料拉伸与压缩蠕变行为的比较研究
引用本文:牛田野,高永建,陶贤超,赵鹏,宫建国,轩福贞. 核级SA-508 Gr.3 Cl.1材料拉伸与压缩蠕变行为的比较研究[J]. 机械工程学报, 2023, 59(4): 96-104. DOI: 10.3901/JME.2023.04.096
作者姓名:牛田野  高永建  陶贤超  赵鹏  宫建国  轩福贞
作者单位:1. 华东理工大学机械与动力工程学院 上海 200237;2. 上海核工程研究设计院有限公司 上海 200233
基金项目:国家科技重大专项资助项目(2018ZX06002004)。
摘    要:堆芯熔融物堆内滞留(In-vessel retention,IVR)是压水堆的严重事故缓解措施。IVR过程中,反应堆压力容器底封头(Reactor pressure vessels,RPV)沿壁厚方向同时存在拉伸和压缩应力。为保证IVR过程中RPV的结构完整性,有必要研究SA-508 Gr.3 Cl.1材料的拉伸和压缩蠕变行为及其差异。基于此,开展了SA-508 Gr.3 Cl.1材料的拉伸蠕变和压缩蠕变试验测试,分析了材料的拉伸和压缩蠕变行为以及变形机制的不同。结果表明:拉伸和压缩蠕变的第一、二阶段基本吻合,但压缩蠕变没有出现明显的蠕变第三阶段;拉伸蠕变在试验应力范围内的变形机制为单一的位错攀移,而随着应力的降低,压缩蠕变变形机制由位错攀移转变为晶界滑移/空位扩散;拉伸蠕变对亚晶组织演化程度的影响大于压缩蠕变,这可能与蠕变变形机制的转变相关。

关 键 词:IVR  拉伸蠕变  压缩蠕变  蠕变变形机制  亚晶结构
收稿时间:2022-02-24

Comparison of Tensile and Compressive Creep Behavior of SA-508 Gr.3 Cl.1 Steel for Nuclear Applications
NIU Tianye,GAO Yongjian,TAO Xianchao,ZHAO Peng,GONG Jianguo,XUAN Fuzhen. Comparison of Tensile and Compressive Creep Behavior of SA-508 Gr.3 Cl.1 Steel for Nuclear Applications[J]. Chinese Journal of Mechanical Engineering, 2023, 59(4): 96-104. DOI: 10.3901/JME.2023.04.096
Authors:NIU Tianye  GAO Yongjian  TAO Xianchao  ZHAO Peng  GONG Jianguo  XUAN Fuzhen
Affiliation:1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237;2. Shanghai Nuclear Engineering Research and Design Institute Co., Ltd., Shanghai 200233
Abstract:The In-vessel retention (IVR) is an important mitigation strategy in severe nuclear accidents. During IVR conditions, the tensile and compressive stress states both exist along the thickness direction of the reactor pressure vessels (RPV). Therefore, the tensile and compressive creep behavior of the SA-508 Gr.3 Cl.1 steel should be discussed to guarantee the structure integrity of the RPV in IVR conditions. Based on this, tensile and compressive creep tests of the SA-508 Gr.3 Cl.1 steel are conducted, and the differences of creep behavior and creep deformation mechanism between tensile and compressive creep are analyzed. Results indicate that the primary and secondary creep regimes of the compressive creep are consistent with that of the tensile creep, while the tertiary creep stage is not observed for compressive creep test. The dominant creep deformation mechanism for tensile creep is dislocation climb within the stress levels studied, while that for the compressive creep changes from dislocation climb to grain boundary sliding or vacancy diffusion with the decrease of the stress. The tensile creep plays a more important role on the evolution of the sub-grain than the compressive creep, which may be induced by the transformation of creep deformation mechanism.
Keywords:IVR  tensile creep  compressive creep  creep deformation mechanism  sub-grain  
点击此处可从《机械工程学报》浏览原始摘要信息
点击此处可从《机械工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号