首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the Effects of Virgin Olive Oil Cleaning Systems on the Secoiridoid Aglycone Content Using High Performance Liquid Chromatography–Mass Spectrometry
Authors:Raffaella Pascale  Giuliana Bianco  Tommaso R I Cataldi  Alessandro Buchicchio  Ilario Losito  Giuseppe Altieri  Francesco Genovese  Antonella Tauriello  Giovanni C Di Renzo  Maria C Lafiosca
Affiliation:1. Scuola di Ingegneria, Università degli Studi della Basilicata, via dell'Ateneo Lucano, Potenza, Italy;2. Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, Potenza, Italy;3. Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona, Bari, Italy;4. Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, via dell'Ateneo Lucano, Potenza, Italy
Abstract:Phenolic compounds are useful markers to control olive oil technological processes, including the virgin olive oil (VOO)/water separation after olive oil extraction. In this investigation, VOO extracted from olives of cv. Coratina using a mild oil/water separator called the hydrocyclone sedimentation system (Hydroil) was compared with VOO obtained using a conventional vertical centrifuge separator (Cenoil), which is mostly used in the modern olive oil industry. Secoiridoid aglycones were selected, among phenolic compounds, as markers and analyzed using reversed‐phase liquid chromatography coupled to linear quadrupole ion‐trap mass spectrometry with electrospray ionization in the negative mode. VOO samples obtained using the Hydroil system were found to contain significantly higher levels of secoiridoid aglycones, compared to the Cenoyl‐type samples. In particular, the total content of the aglycones of decarboxymethyl oleuropein, decarboxymethyl ligstroside, ligstroside, and oleuropein, expressed in terms of oleuropein, was estimated as 35.40 ± 0.80 mg kg?1, compared to 8.06 ± 0.41 mg kg?1 in the Cenoil samples (n = 3). Since no significant difference in residual water (P < 0.05) was found between the two types of VOO samples, the higher amount of secoiridoids obtained for Hydroil‐type ones was explained by the lower extent of oxidation occurring during the mild oil/water separation achieved using the Hydroil system.
Keywords:Secoiridoids  Virgin olive oil  Hydrocyclone  Liquid chromatography  Mass spectrometry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号