首页 | 本学科首页   官方微博 | 高级检索  
     


Benign route for the modification and characterization of poly(lactic acid) (PLA) scaffolds for medicinal application
Authors:Shebi Alippilakkotte  Lisa Sreejith
Affiliation:Soft Material Research Laboratory, National Institute of Technology, Calicut 673601, India
Abstract:Scaffolds fabricated from polymers have imprinted its wide applicability in the field of tissue engineering. The surface of electrospun poly(lactic acid) (PLA) nanofibers was modified to improve their compatibility with living medium. PLA film were treated with alkali solution to introduce carboxyl groups on the surface followed by covalent grafting of gelatin using Xtal Fluoro‐E as coupling agent. The gelatin g‐PLA polymer synthesized via ‘graft‐onto’ method exhibit fascinating properties as studied by contact angle measurement, fourier transformed infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, water vapor transmission rate(WVTR), swelling studies and differential scanning calorimetry. The fabricated gelatin g‐PLA scaffolds were further characterized to conduct the study on hydrolytic degradation, and extent of biodegradation at ambient temperature. It was observed from the in‐vitro analysis that the gelatin g‐PLA nanofiber (with hemolytic percentage, 0.56 ± 0.13%) was cytocompatible with fibroblast cell and does not impair cell growth. The WVTR obtained for the electrospun mat around 2900 ± 100 g/m2. 24 h signifies the optimal moist environment required for tissue engineering especially wound healing. Notably, many of these strategies resulted in porous hydrophilic scaffolds with human cell growth and proliferation for medical applications of various types. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46056.
Keywords:biomedical applications  biopolymers  fibers  grafting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号