首页 | 本学科首页   官方微博 | 高级检索  
     


Chitosan/MCM‐41 nanocomposites for efficient beryllium separation
Authors:Rania E. Morsi  Mohamed A. Elsherief  M. Shabaan  M. Z. Elsabee
Affiliation:1. Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Cairo, Egypt;2. Nuclear Materials Authority, Maadi, Cairo, Egypt;3. Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
Abstract:Chitosan nanoparticles (Ch NPs) with individual particles 10–30 nm in size and average aggregate sizes of 240 nm were prepared via ionic gelation. Ordered mesoporous Mobil Composition of Matter No. 41 (MCM‐41) with a surface area of 1590 m2/g was prepared via a sol–gel method. The nanocomposites were prepared via the in situ dispersion of MCM‐41 in chitosan followed by ionic gelation with a multivalent anion to produce MCM‐41‐impregnated Ch NPs or via the mixture of dispersed MCM‐41 with preprepared Ch NPs to produce Ch NPs supported on MCM‐41. The beryllium‐uptake efficiency was studied with different pH values, contact times, and initial Be(II) concentrations. The maximum achieved uptake efficiencies of the nanocomposites (95% and 96%) were superior to that of MCM‐41 (38%) and higher than that of Ch NPs (90%). The nanocomposite formulas facilitated post‐treatment separation while maintaining a high beryllium‐uptake efficiency. The Be(II)‐uptake process for all of the materials followed the pseudo‐second‐order kinetic model and both the Langmuir and Freundlich isotherms. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46040.
Keywords:adsorption  biopolymers and renewable polymers  composites  nanostructured polymers  porous materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号