首页 | 本学科首页   官方微博 | 高级检索  
     


Uncertainty analysis of structural output with closed-form expression based on surrogate model
Abstract:Uncertainty analysis (UA) is the process that quantitatively identifies and characterizes the output uncertainty and has a crucial implication in engineering applications. The research of efficient estimation of structural output moments in probability space plays an important part in the UA and has great engineering significance. Given this point, a new UA method based on the Kriging surrogate model related to closed-form expressions for the perception of the estimation of mean and variance is proposed in this paper. The new proposed method is proven effective because of its direct reflection on the prediction uncertainty of the output moments of metamodel to quantify the accuracy level. The estimation can be completed by directly using the redefined closed-form expressions of the model’s output mean and variance to avoid excess post-processing computational costs and errors. Furthermore, a novel framework of adaptive Kriging estimating mean (AKEM) is demonstrated for more efficiently reducing uncertainty in the estimation of output moment. In the adaptive strategy of AKEM, a new learning function based on the closed-form expression is proposed. Based on the closed-form expression which modifies the computational error caused by the metamodeling uncertainty, the proposed learning function enables the updating of metamodel to reduce prediction uncertainty efficiently and realize the decrease in computational costs. Several applications are introduced to prove the effectiveness and efficiency of the AKEM compared with a universal adaptive Kriging method. Through the good performance of AKEM, its potential in engineering applications can be spotted.
Keywords:Uncertainty analysis  Adaptive procedure  Kriging surrogate model  Closed-form expression  Epistemic uncertainty
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号