首页 | 本学科首页   官方微博 | 高级检索  
     


Determining source strength of semivolatile organic compounds using measured concentrations in indoor dust
Authors:H‐M Shin  T E McKone  M G Nishioka  M D Fallin  L A Croen  I Hertz‐Picciotto  C J Newschaffer  D H Bennett
Affiliation:1. Department of Public Health Sciences, University of California, , Davis, CA, USA;2. School of Public Health, University of California, , Berkeley, CA, USA;3. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, , Berkeley, CA, USA;4. College of Public Health, Ohio State University, , Columbus, OH, USA;5. Department of Epidemiology, Johns Hopkins University, , Baltimore, MD, USA;6. Division of Research, Kaiser Permanente of Northern California, , Oakland, CA, USA;7. Department of Epidemiology and Biostatistics, Drexel University, , Philadelphia, PA, USA
Abstract:Consumer products and building materials emit a number of semivolatile organic compounds (SVOCs) in the indoor environment. Because indoor SVOCs accumulate in dust, we explore the use of dust to determine source strength and report here on analysis of dust samples collected in 30 US homes for six phthalates, four personal care product ingredients, and five flame retardants. We then use a fugacity‐based indoor mass balance model to estimate the whole‐house emission rates of SVOCs that would account for the measured dust concentrations. Di‐2‐ethylhexyl phthalate (DEHP) and di‐iso‐nonyl phthalate (DiNP) were the most abundant compounds in these dust samples. On the other hand, the estimated emission rate of diethyl phthalate is the largest among phthalates, although its dust concentration is over two orders of magnitude smaller than DEHP and DiNP. The magnitude of the estimated emission rate that corresponds to the measured dust concentration is found to be inversely correlated with the vapor pressure of the compound, indicating that dust concentrations alone cannot be used to determine which compounds have the greatest emission rates. The combined dust‐assay modeling approach shows promise for estimating indoor emission rates for SVOCs.
Keywords:Dust  Emission rates  Modeling  Flame retardants  Personal care products  Phthalates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号