首页 | 本学科首页   官方微博 | 高级检索  
     

基于时、频域自相似性的配电变压器环境噪声识别方法
引用本文:刘元,苏盛,刘正谊,夏云峰,刘贯科,李彬. 基于时、频域自相似性的配电变压器环境噪声识别方法[J]. 电力自动化设备, 2022, 42(3): 203-209. DOI: 10.16081/j.epae.202111021
作者姓名:刘元  苏盛  刘正谊  夏云峰  刘贯科  李彬
作者单位:长沙理工大学 电网新能源防灾减灾研究中心,湖南 长沙 410004,国网常德供电公司,湖南 常德 415000,广东电网有限责任公司东莞供电局,广东 东莞 523000
基金项目:国家自然科学基金资助项目(51777015);湖南省自然科学基金资助项目(2020JJ4611);湖南省教育厅重点项目(19A011)
摘    要:配电变压器位于开放的嘈杂环境中,环境噪声对基于声音的设备运行状态在线监测具有突出影响.如何识别和剔除含噪声干扰的录音片段,是推进基于声音的配电变压器状态在线监测亟待解决的瓶颈问题.分析指出配电设备正常和异常的运行声音与各种环境噪声在时域和频域上的差异性特征,提出基于时、频域自相似性的配电设备录音数据中含环境噪声片段的识...

关 键 词:声音信号  状态监测  配电变压器  噪声消除

Environmental noise recognition method for distribution transformer based on time domain and frequency domain self-similarity
LIU Yuan,SU Sheng,LIU Zhengyi,XIA Yunfeng,LIU Guanke,LI Bin. Environmental noise recognition method for distribution transformer based on time domain and frequency domain self-similarity[J]. Electric Power Automation Equipment, 2022, 42(3): 203-209. DOI: 10.16081/j.epae.202111021
Authors:LIU Yuan  SU Sheng  LIU Zhengyi  XIA Yunfeng  LIU Guanke  LI Bin
Affiliation:Disaster Prevention and Reduction Center of Renewable Energy System, Changsha University of Science and Technology, Changsha 410004, China;State Grid Changde Power Supply Company, Changde 415000, China;Dongguan Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Dongguan 523000, China
Abstract:The distribution transformer is located in an open noisy environment, and environmental noise has a prominent impact on the online monitoring of sound-based equipment operating status. How to identify and eliminate recordings containing noise is a bottleneck problem to be solved urgently in the promotion of sound-based online monitoring of the status of distribution transformer. The analysis points out the difference between the normal and abnormal operating sound of power distribution equipment and various kinds of environmental noises in time and frequency domains. The method for identifying environmental noise fragments in the recording data of power distribution equipment based on self-similarity in time and frequency domains is proposed. After the minute-level recording data is divided into frames, the time domain and frequency domain characteristic indexes of each frame are extracted. Whether the recording fragments have self-similarity is judged by clustering, and the recording data containing environmental noise are identified and eliminated. The experimental results show that the proposed method can effectively identify and eliminate the recording segments containing environmental noise, thereby recording data with lower environmental noise content can be obtained, and providing strong support for the subsequent development of sound signal-based status monitoring of distribution transformer.
Keywords:sound signal   status monitoring   distribution transformer   noise rejection
本文献已被 万方数据 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号