首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency-dependent conductance change of dielectrophoretic-trapped DNA-labeled microbeads and its application in DNA size determinations
Authors:Michihiko Nakano  Zhenhao Ding  Junya Suehiro
Affiliation:1.Faculty of Information Science and Electrical Engineering,Kyushu University,Fukuoka,Japan;2.Graduate School of Information Science and Electrical Engineering,Kyushu University,Fukuoka,Japan
Abstract:DNA amplification is essential in several types of molecular biology approaches. A more rapid and easy analysis of amplicons is still required although many analysis methods have been developed. We have recently devised a new DNA detection method, where DNA amplicons are attached to dielectric microbead surfaces, so that their dielectrophoresis (DEP) force on the microbead reverses polarity, from negative to positive. The DNA-labeled microbeads are trapped on a microelectrode by positive DEP, enabling their rapid detection via DEP impedance measurement. In this paper, we report frequency-dependent conductance of DNA-labeled microbeads. To measure the impedance, sweep-frequency voltage was superimposed on fixed-frequency voltage, with the aim of inducing frequency-dependent conformational change of microbead-attached DNA, ultimately resulting in a change in the conductance of DNA-labeled microbeads. Microbeads labeled with DNA of various sizes (142-, 204-, 391-, and 796-bp) were examined. The normalized conductance sharply decreased at a specific frequency; the frequency was higher with larger DNA size, suggesting a potential application of this method in distinguishing DNA targets according to their size. By combining this method with previously devised DNA detection techniques, both the size and amount of target DNA can be determined within 20 min. This approach is easier and more rapid than conventional methods, such as a gel electrophoresis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号