首页 | 本学科首页   官方微博 | 高级检索  
     

锚节点稀疏环境下蒙特-卡罗盒定位算法
引用本文:刘宏,张子扬,魏浩鹏. 锚节点稀疏环境下蒙特-卡罗盒定位算法[J]. 传感器与微系统, 2014, 0(8): 131-133
作者姓名:刘宏  张子扬  魏浩鹏
作者单位:江西理工大学电气工程与自动化学院,江西赣州341000
基金项目:国家自然科学基金资助项目(61163063)
摘    要:提出一种适用于锚节点稀疏环境下的蒙特—卡罗盒定位(SDANMCB)算法。算法在定位过程中将定位精度高的节点转换为虚拟锚节点来辅助其他待定位节点进行定位;同时根据采样箱的面积和附近锚节点数量调整定位所需要的样本数;滤波后根据样本的后验分布调整样本权重。仿真结果表明:算法在定位精度、采样效率上都有明显提升,并且在锚节点密度较低时定位效果有较大改善。

关 键 词:无线传感器网络  锚节点  蒙特—卡罗  采样优化

Monte-Carlo boxed localization algorithm for sparse anchor nodes environment
LIU Hong,ZHANG Zi-yang,WEI Hao-peng. Monte-Carlo boxed localization algorithm for sparse anchor nodes environment[J]. Transducer and Microsystem Technology, 2014, 0(8): 131-133
Authors:LIU Hong  ZHANG Zi-yang  WEI Hao-peng
Affiliation:( School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China)
Abstract:Propose a sparse distributed anchor node Monte-Carlo boxed (SDANMCB) localization algorithm, which transfer node with high positioning precision to virtual anchor node to assist other nodes for localization; according to area of sampling box and neighbour anchor node amounts to adjust sample numbers needed for positioning;after filtering, adjust weight of samples according to posterior distribution of sample. Simulation results show this algorithm has obvious improvement in localization precision, sampling efficiency, and in low anchor node density, localization effect has great improvement.
Keywords:wireless sensor networks (WSNs)  anchor node  Monte-Carlo  sampling optimization
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号