首页 | 本学科首页   官方微博 | 高级检索  
     

基于q-高斯分布的自适应变异粒子群算法
引用本文:赵伟,伞冶,石慧姝. 基于q-高斯分布的自适应变异粒子群算法[J]. 沈阳工业大学学报, 2012, 34(3): 354-360
作者姓名:赵伟  伞冶  石慧姝
作者单位:哈尔滨工业大学控制与仿真中心
基金项目:国家自然科学基金资助项目(60474069)
摘    要:针对粒子群算法易陷入局部极值和早熟收敛的缺陷,提出了基于q-高斯分布的自适应变异粒子群算法.采用q-高斯作为变异算子对粒子的全局最优位置进行q-高斯变异,克服了因种群遗失多样性所导致的早熟收敛缺陷,随着种群的进化,非广延熵指数 q 的自适应调整平衡了算法的全局搜索能力和局部开发能力.测试了4个标准复杂函数和优化BP神经网络参数,结果表明,基于 q-高斯分布的自适应变异粒子群算法的优化性能最好,收敛速度快.

关 键 词:粒子群算法  自适应变异  q-高斯分布  数值优化  神经网络参数优化  种群多样性  全局搜索能力  局部搜索能力  

Particle swarm algorithm with adaptive mutation based on q-Gaussian distribution
ZHAO Wei,SAN Ye,SHI Hui-shu. Particle swarm algorithm with adaptive mutation based on q-Gaussian distribution[J]. Journal of Shenyang University of Technology, 2012, 34(3): 354-360
Authors:ZHAO Wei  SAN Ye  SHI Hui-shu
Affiliation:(Control and Simulation Center,Harbin Institute of Technology,Harbin 150001,China)
Abstract:Aiming at the disadvantages that the particle swarm algorithm is easy to run into the local extremum and premature convergence,a particle swarm algorithm with adaptive mutation based on q-Gaussian distribution was proposed.q-Gaussian was taken as the mutation operator to carry out the q-Gaussian mutation for the global optimal position of particles.Thus,the premature convergence caused by the loss of population diversity is overcome.With the evolution of population,the adaptive adjustment of non-extensive entropic index q balances the global searching ability and local development ability of the algorithm.In addition,four standard complex functions were tested,and the parameters of BP neural network were optimized.The results show that the particle swarm algorithm with adaptive mutation based on q-Gaussian distribution has the best optimization performance and fast convergence speed.
Keywords:particle swarm algorithm  adaptive mutation  q-Gaussian distribution  numerical optimization  neural network parameter optimization  population diversity  global searching ability  local searching ability
本文献已被 CNKI 等数据库收录!
点击此处可从《沈阳工业大学学报》浏览原始摘要信息
点击此处可从《沈阳工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号