New method for time-resolved diesel engine exhaust particle mass measurement |
| |
Authors: | Lehmann U Niemelä V Mohr M |
| |
Affiliation: | Laboratory for Internal Combustion Engines, EMPA (Swiss Federal Laboratories for Materials Testing and Research), CH-8600 Dübendorf, Switzerland. Urs.Lehmann@empa.ch |
| |
Abstract: | The Dekati mass monitor (DMM; Dekati Ltd., Finland), a relatively new real-time mass measurement instrument, was investigated in this project. In contrast to the existing gravimetric filter method also used as a standard for regulation purposes, this instrument provides second-by-second data on mass concentration in the engine exhaust gas. The principle of the DMM is based on particle charging, inertial and electrical size classification, and electrical detection of aerosol particles. This study focuses on the instrument's practical performance. Details on calibration and the theory of operation will be published elsewhere. The exhaust emissions of two heavy-duty engines complying with the Euro III emission standard were measured on a dynamic engine test bench. We looked atthe particle number and mass emissions of the engines in different transient test cycles and steady-state conditions. The ability to follow transient test cycles and the response times of the DMM were investigated. The aerosol mass concentration measured by the DMM was compared with the mass concentration obtained by the standard gravimetric filter method with Teflon-coated glass fiber filters. The total mass concentration (integral over the whole cycle) measured by the DMM is about 20% higher than that measured by the standard gravimetric filter method. The total mass concentration from the DMM was also compared with the volume concentration calculated from the electrical low-pressure impactor (ELPI) measurements. Correlations were made with other particle measuring systems. The DMM correlates very well with the particulate mass (R2 = 0.95) and exhibits good linearity and repeatability. The response time to a well-defined change in exhaust concentration was observed to be fast and stable. The DMM was able to follow transient test cycles and provides good results on a second-by-second basis. The instrument used in this study was still under development, and there is therefore no complete scientific background reference for the DMM. This study therefore focuses more on the measurements than on the scientific background. The measurements have shown thatthe DMM is an adequate instrument for measuring the mass concentration of engine exhaust, with results comparable to those from the standard gravimetric filter method. In addition, the DMM provides real-time second-by-second data of the mass concentration during transient test cycles. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|