首页 | 本学科首页   官方微博 | 高级检索  
     


On simultaneous straight-line grid embedding of a planar graph and its dual
Authors:Huaming Zhang  Xin He
Affiliation:a Computer Science Department, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
b Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
Abstract:Simultaneous representations of planar graphs and their duals normally require that the dual vertices to be placed inside their corresponding primal faces, and the edges of the dual graph to cross only their corresponding primal edges. Erten and Kobourov [C. Erten, S.G. Kobourov, Simultaneous embedding of a planar graph and its dual on the grid, Theory Computer Systems 38 (2005) 313-327] provided a linear time algorithm on simultaneous straight-line grid embedding of a 3-connected planar graph and its dual such that all the vertices are placed on grid points and each edge is drawn as one straight-line segment except for one which is drawn using two segments. Their drawing size is (2n−2)×(2n−2), where n is the total number of vertices in the graph and its dual. They raised an open question on whether there is a large class of planar graphs that allows this simultaneous straight-line grid embedding on a smaller grid. We answer this open question by giving a linear time simultaneous straight-line grid embedding algorithm for a 3-connected planar graph and its dual on a grid of size (n−1)×n.
Keywords:Graph algorithms   Planar graph   Simultaneous embedding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号