首页 | 本学科首页   官方微博 | 高级检索  
     


Kic Transition-temperature behavior of A517-F Steel
Authors:J M Barsom and S T Rolfe
Affiliation:

Applied Research Laboratory, U.S. Steel Corporation, Monroeville, Pa. 15146, U.S.A.

Abstract:Linear-elastic fracture mechanics has been widely used to obtain Kic values on very-high-strength steels (yield strengths > 200 ksi) that generally do not exhibit a ductue-to-brittie transition in failure mode as a function of temperature. However, as the use of the Kic test approach is extended to those steels that do exhibit a ductile-to-brittle transition, information on the Kic transition-temperature behavior of steels is required. Therefore, to establish general relations between Kic and Charpy test results, slow-bend Kic fracture tests and various Charpy tests were conducted on A517-F steel at temperatures between ?320 and +80°F.

The results indicated that a plane-strain Kic température transition does exist for A517-F steel. Furthermore, this transition occurred in the same temperature range (?150 to ?50°F) as the transition denned by slow-bend Charpy test results for fatigue-cracked specimens. In both the Kic tests and the Charpy tests, the transition-temperature behavior appeared to be related to a gradual change in the microscopic fracture mechanism. The upper shelf, as denned by slow-bend Charpy tests, appeared to be a region in which Kic values cannot be obtained, regardless of specimen geometry, because of general yielding and crack blunting.

A procedure is proposed in which the dynamic Kic behavior of a material can be predicted from static Kic test data by shifting the static Kic values along the temperature axis by the same amount as the static Charpy energy values are shifted by impact testing.

In general, the results of this investigation have demonstrated that a transition in Kic behavior of A517-F steel does exist as a fution of temperature and that that transition is independent of the Kic to Kc stress-state transition.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号