首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite
Affiliation:1. Institute of Geology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russian Federation;2. Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184200 Apatity, Russian Federation;3. National Research Tomsk Polytechnic University, Tomsk 634050, Russian Federation
Abstract:Dissolution of mechanically activated Panzhihua ilmenite in hydrochloric acid for the preparation of synthetic rutile was investigated. Both the dissolution and its coupled titanium hydrolysis were greatly enhanced by the mechanical pretreatment. Increases in the lattice strain and surface area of ilmenite induced by energetic ball milling were responsible for the enhanced dissolution. The rapid hydrolysis led to formation of quantities of the nanosized primary particles, giving rise to a solid/liquid separation problem. The 15 min milled ilmenite, however, yielded an easy-to-filter hydrolysate due to formation of porous, micron-sized, secondary particles during the dissolution. The crystallization and aggregation behaviour of the primary particles were probably related to both the surface property of the un-reacted solid and the ferric ion concentration in solution. The technology for preparation of synthetic rutile was systematically investigated. The optimum milling and dissolution conditions were as follows: milling in air for 15 min, hydrochloric acid concentration 20%, initial reaction temperature 100 °C, ilmenite/20% acid mass ratio 1 g:5.5 g, reaction time ≥ 6 h. The synthetic rutile prepared under the optimum conditions contained 92% TiO2 and 2.1% Fe2O3 as well as combined CaO and MgO of 0.28%. The results demonstrate that the mechanical pretreatment can take the place of the traditional high temperature pretreatment of ilmenite and avoid the dissolution being conducted under pressurized condition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号