首页 | 本学科首页   官方微博 | 高级检索  
     


Anisotropy of rare-earth magnets
Authors:R. Skomski D.J. Sellmyer
Affiliation:aDepartment of Physics and Astronomy, NCMN, University of Nebraska, Lincoln, NE 68508, USA
Abstract:Rare-earth intermetallics such as Nd2Fe14B and Sm-Co are widely used as high-performance permanent magnets, because they combine high magnetocrystalline anisotropy with reasonable magnetization and Curie temperature. The anisotropy is a combined effect of spin-orbit coupling and electrostatic crystal-field interactions. The main contribution comes from the rare-earth 4f electrons, which are well-screened from the crystalline environment but exhibit a strong spin-orbit coupling. In this limit, the magnetocrystalline anisotropy has a very transparent physical interpretation, the anisotropy energy essentially being equal to the energy of Hund's-rules 4f ion in the crystal field. The corresponding expression for the lowest-order uniaxial anisotropy constant K1 is used to discuss rare-earth substitutions, which have recently attracted renewed interest due to shifts in the rare-earth production and demand. Specific phenomena reviewed in this article are the enhancement of the anisotropy of Sm2Fe17 due to interstitial nitrogen, the use of Sm-Co magnets for high-temperature applications, and the comparison of rare-earth single-ion anisotropy with other single-ion and two-ion mechanisms.
Keywords:magnetic anisotropy   spin-orbit coupling   crystal-field interaction   interstitial modification   permanent magnets   rare earths
本文献已被 维普 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号