首页 | 本学科首页   官方微博 | 高级检索  
     


Tensile properties and thermal expansion of discontinuously reinforced aluminium composites at subambient temperatures
Authors:A. L GEIGER  P WELCH
Affiliation:(1) Advanced Composite Materials, Corporation, Greer, SC 29651, USA;(2) Gencorp Aerojet, Electronic Systems Division, Azusa, CA 91702, USA
Abstract:The effects of temperature on the mechanical properties and thermal expansion of two discontinuously reinforced aluminium composites have been determined over the range 300–100 K. Silicon carbide particulate-reinforced 2009 and 6092 aluminium alloys were studied by tensile testing, in which both longitudinal and transverse strains were recorded, and by thermal expansion measurements. The test results clearly show that cooling to 100 K induces plastic flow in the aluminium alloy matrices due to the thermal expansion difference between aluminium and silicon carbide. At very low temperatures, the linear region of the stress-strain curve is greatly reduced or eliminated and the Poisson’s ratio, ν, increases. For the higher yield strength 2009 matrix composite, ν increases from a room-temperature value of 0.28 to 0.35 at 100 K. For the lower-strength 6029 matrix composite, ν increases from a room-temperature value of 0.33 to a value of 0.5 at 100 K. A Poisson’s ratio of 0.5 is the value characteristic of plastic flow in an incompressable material. Changes in yield strength, Young’s modulus and thermal expansion with decreasing temperature are also consistent with thermally induced plastic flow in the composite matrix. This revised version was published online in November 2006 with corrections to the Cover Date.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号