首页 | 本学科首页   官方微博 | 高级检索  
     

基于非高斯分布和上下文法模型的小波阈值去噪算法
引用本文:杨黎,庄成三. 基于非高斯分布和上下文法模型的小波阈值去噪算法[J]. 计算机应用, 2005, 25(5): 1096-1098,1101
作者姓名:杨黎  庄成三
作者单位:四川大学,计算机学院,四川,成都,610065;四川大学,计算机学院,四川,成都,610065
摘    要:提出了一种新的空间自适应小波阈值去噪算法,该算法是基于非高斯二元分布的贝叶斯统计模型和上下文法模型。非高斯二元分布由两个变元和一个参数组成,能够完全体现小波系数之间相关性,这是广义高斯分布所不能体现的特性。上下文法模型是图像编码技术,用来求取小波系数的方差。试验数据显示该算法不仅在直观视觉上去噪效果明显,而且在信噪比方面也要优于SureShrink、BayesShrink、Wiener2等方法。

关 键 词:小波阈值  贝叶斯统计模型  上下文法模型  非高斯二元分布
文章编号:1001-9081(2005)05-1096-03

Wavelet threshold denoising via non-Gaussian distribution and context model
YANG Li,ZHUANG Cheng-san. Wavelet threshold denoising via non-Gaussian distribution and context model[J]. Journal of Computer Applications, 2005, 25(5): 1096-1098,1101
Authors:YANG Li  ZHUANG Cheng-san
Abstract:A new spatial adaptive wavelet threshold denoising method was presented, which was based on a non-Gaussian bivariate distribution and context model for image denoising inspired by image coding. The dependency between coefficients and their parents was carefully studied and a new distribution model composed of two variables and a free parameter was proposed. Context model is the core method in image coding and is applied in this project to choose the spatial adaptive threshold derived in a Bayesian framework. Experiment results show that this new method outperforms the best of the recently published methods, such as SureShrink, Wiener2, and BayesShrink.
Keywords:wavelet threshold  Bayes statistics  context model  non-Gaussian bivariate distribution
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号