首页 | 本学科首页   官方微博 | 高级检索  
     


A Pian–Sumihara type element for modeling shear bands at finite deformation
Authors:Colin McAuliffe  Haim Waisman
Affiliation:1. Department of Civil Engineering and Engineering Mechanics, Columbia University, 610 Seeley W. Mudd Building; 500 West 120th Street, Mail Code 4709, New York, NY, 10027, USA
Abstract:A monolithic numerical solution of a partial differential equation (PDE) model for shear bands, which includes a thermal softening rate dependent plastic flow rule and finite thermal conductivity, is presented. The formulation accounts for large deformation kinematics and includes incrementally objective treatment of the hypoplastic constitutive relations. Regularization is achieved by including finite thermal conductivity, which informs the PDE system of a length scale, governed by competition between shear heating and thermal diffusion. The monolithic solution scheme is then used to eliminate splitting errors during the solution of the discretized system. The scheme is presented in a general, mixed formulation, which allows for many choices of shape functions. We study and compare two elements, which have been implemented with the monolithic nonlinear solver: the Irreducible Shear Band Quad (ISBQ) and the Pian Sumihara Shear Band Quad (PSSBQ). ISBQ employs the same interpolation as an irreducible four node quad while PSSBQ is a mixed, assumed stress element. The algorithmic approximations to the Lie derivative and Jaumann rate of Kirchhoff stress are available in the literature for ISBQ type elements, and are derived in this paper for the PSSBQ. These expressions are used to achieve an incrementally objective formulation. It is found that the PSSBQ converges faster than the ISBQ with mesh refinement, and that the convergence of the ISBQ can be improved with a remeshing procedure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号