首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of regenerative chatter in the high-speed vertical milling of thin-walled workpiece made of titanium alloy
Authors:Minghai Wang  Lei Gao  Yaohui Zheng
Affiliation:1. Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang University of Aeronautics and Astronautics, Shenyang, Liaoning Province, 110136, China
Abstract:With the wide application of high-speed cutting technology, high-speed machining approach of titanium alloy has become one of the most effective ways to improve processing efficiency and to reduce the processing cost, but the cutting chatter which often occurs in the cutting process not only affects the machining surface quality but also reduces the production efficiency. Regenerative chatter is a typical phenomenon during actual cutting, and it has the greatest impact on the cutting process. With the purpose of avoiding regenerative chatter and selecting appropriate cutting parameters to achieve a steady cutting process and a high surface quality, it is necessary to determine the critical boundary conditions where chatter occurs. Built on the work of previous theoretical researches of regenerative chatter, this paper utilized Visual C++ software to calculate the chatter stability domain during the finish machining of titanium alloy. It was shown that the border between a stable cut and an unstable cut can be visualized in terms of the axial depth of cut as a function of the spindle speed. Using the result, it can find the specific combination of machining parameters, which lead to the maximum chatter-free material removal rate. In order to verify the result, the high-speed milling experiment of an I-shaped thin-walled workpiece made of titanium alloy was conducted. It revealed that the actual machining result was consistent with the calculation prediction. This study will offer a useful guide for effective parameter selection in future CNC machining applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号