首页 | 本学科首页   官方微博 | 高级检索  
     

数据挖掘算法在交通状态量化及识别的应用
引用本文:孙亚,钱洪波,叶亮. 数据挖掘算法在交通状态量化及识别的应用[J]. 计算机应用, 2008, 28(3): 738-741
作者姓名:孙亚  钱洪波  叶亮
作者单位:同济大学,交通运输工程学院,上海,201804;同济大学,控制理论与控制工程博士后流动站,上海,201804
摘    要:在智能交通系统(ITS)环境下,以交通检测器采集的海量交通流信息为对象,通过数据挖掘技术即数据获取、数据预处理、挖掘方法、结果分析与评价、模式应用等进行新的信息提取,提出了各阶段的要求和聚类分析及模式识别的算法,最后从海量数据中得到新的有用信息交通状态分类,同时使用实时采集交通流数据进行交通状态判别。实验结果表明识别状态能够准确反映实际交通状态。

关 键 词:检测器采集信息  数据挖掘  交通状态  聚类分析
文章编号:1001-9081(2008)03-0738-04
收稿时间:2007-09-12
修稿时间:2007-09-12

Application of data mining in traffic state quantification and recognition
SUN Ya,QIAN Hong-bo,YE Liang. Application of data mining in traffic state quantification and recognition[J]. Journal of Computer Applications, 2008, 28(3): 738-741
Authors:SUN Ya  QIAN Hong-bo  YE Liang
Affiliation:SUN Ya1,QIAN Hong-bo2,YE Liang1(1.School of Transportation Engineering,Tongji University,Shanghai 201804,China,2.Control Theory , Control Engineering Mobile Station for Postdoctors,China)
Abstract:In the Intelligent Transportation System (ITS) environment, the magnanimous flow information of traffic detector was targeted, using data mining technology which included data collection, data preprocessing, data mining, result analysis and appraisal and pattern application to carry on new information extraction. Various stages request as well as the clustering analysis and the pattern recognition algorithm were proposed. Finally the new useful information traffic state was obtained from the magnanimous data. Simultaneously the real-time gathering traffic data was used to distinguish the traffic state, which finally indicated the recognition state could accurately reflect the actual traffic state.
Keywords:collected information from detector  data mining  traffic state  clustering analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号