摘 要: | 针对非圆弧拱面内线性自由振动没有解析的现状,提出了一种变系数平衡微分方程近似解析方法来解决该问题。基于笛卡尔直角坐标系下非圆弧拱线性应变与Hamilton原理,推演了非圆弧拱面内自由振动变系数平衡微分方程;基于陡拱与浅拱面内振型没有显著差异的基本假定,将该变系数平衡微分方程对应的常系数平衡微分方程的通解,代入变系数平衡微分方程,得到该变系数平衡微分方程的不平衡差;当该不平衡差沿全拱积分为零时自振频率误差最小,进而得到非圆弧拱面内自振频率高精度实用解析。基于所提出的变系数平衡微分方程近似解析方法,推演了非圆弧两铰拱与无铰拱面内自振频率实用解析,并阐明了非圆弧拱与同参数直梁面内自振频率的逻辑关系。抛物线、悬索线、悬链线与组合线等常用非圆弧两铰拱与无铰拱自由振动算例结果表明:该研究的基本假定得到了严格检验;自振频率与有限元结果吻合较好,非圆弧拱前十阶自振频率中,两铰拱自振频率最大相对误差为7.71%,无铰拱自振频率最大相对误差为4.34%;非圆弧拱与同参数直梁面内自振频率的比例系数,可为行业规范条文修订提供参考。
|