首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子群优化的并行极限学习机*
引用本文:李婉华,陈羽中,郭昆,郭松荣,刘漳辉. 基于改进粒子群优化的并行极限学习机*[J]. 模式识别与人工智能, 2016, 29(9): 840-849. DOI: 10.16451/j.cnki.issn1003-6059.201609009
作者姓名:李婉华  陈羽中  郭昆  郭松荣  刘漳辉
作者单位:1.福州大学 数学与计算机科学学院 福州 350116。2.福州大学 福建省网络计算与智能信息处理重点实验室 福州 350116。3.海西政务大数据应用协同创新中心 福州 350003
基金项目:国家自然科学基金项目(No.61300102,61300103,61300104)、福建省自然科学基金项目(No.2014J01233,2013J01230,2013J01232)、福建省杰出青年科学基金项目(No.2015J06014,2014J06017)、福建省教育厅重点项目(No.JK2012003)、福建省科技厅高校产学合作重大项目(No.2014H6014)、福建省科技创新平台项目(No.2014H2005)、福建省科技平台建设项目(No.2009J1007)资助
摘    要:为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM)。结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数。通过引入变异算子,增强种群的多样性,并提高收敛速度。为了处理大规模电力负荷数据,提出基于Spark并行计算框架的并行化算法(PIPSO-ELM)。基于真实电力负荷数据的实验表明,PIPSO-ELM具有更高的稳定性及可扩展性,适合处理大规模的电力负荷数据。

关 键 词:电力负荷预测   极限学习机(ELM)   粒子群优化   变异算子   并行计算  
收稿时间:2016-01-11

Parallel Extreme Learning Machine Based on Improved Particle Swarm Optimization
LI Wanhua,CHEN Yuzhong,GUO Kun,GUO Songrong,LIU Zhanghui. Parallel Extreme Learning Machine Based on Improved Particle Swarm Optimization[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(9): 840-849. DOI: 10.16451/j.cnki.issn1003-6059.201609009
Authors:LI Wanhua  CHEN Yuzhong  GUO Kun  GUO Songrong  LIU Zhanghui
Affiliation:1.College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116.2.Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, .Fuzhou University, Fuzhou 350116.3.Fujian Collaborative Innovation Center for Big Data Applications in Governments, Fuzhou 350003
Abstract:To improve the stability of extreme learning machine(ELM), an extreme learning machine based on improved particle swarm optimization (IPSO-ELM) is proposed. By combining the improved particle swarm optimization with ELM, IPSO-ELM can find the optimal number of nodes in the hidden layer as well as the optimal input weights and hidden biases. Furthermore, a mutation operator is introduced into IPSO-ELM to enhance the diversity of swarm and improve the convergence speed of the random search process. Then, to handle the large-scale electrical load data, a parallel version of IPSO-ELM named PIPSO-ELM is implemented with the popular parallel computing framework Spark. Experimental results of real-life electrical load data show that PIPSO-ELM obtains better stability and scalability with higher efficiency in large-scale electrical load prediction.
Keywords:Electrical Load Prediction   Extreme Learning Machine(ELM)   Particle Swarm Optimization (PSO)   Mutation Operator   Parallel Computation  
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号