首页 | 本学科首页   官方微博 | 高级检索  
     


Membranes,minerals, and proteins of developing vertebrate enamel
Authors:Diekwisch Thomas G H  Berman Brett J  Anderton Xochitl  Gurinsky Brian  Ortega Adam J  Satchell Paul G  Williams Mia  Arumugham Chithra  Luan Xianghong  McIntosh James E  Yamane Akira  Carlson David S  Sire Jean-Yves  Shuler Charles F
Affiliation:Allan G. Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Illinois, USA.
Abstract:Developing tooth enamel is formed as organized mineral in a specialized protein matrix. In order to analyze patterns of enamel mineralization and enamel protein expression in species representative of the main extant vertebrate lineages, we investigated developing teeth in a chondrichthyan, the horn shark, a teleost, the guppy, a urodele amphibian, the Mexican axolotl, an anuran amphibian, the leopard frog, two lepidosauria, a gecko and an iguana, and two mammals, a marsupial, the South American short-tailed gray opossum, and the house mouse. Electron microscopic analysis documented the presence of a distinct basal lamina in all species investigated. Subsequent stages of enamel biomineralization featured highly organized long and parallel enamel crystals in mammals, lepidosaurians, the frog, and the shark, while amorphous mineral deposits and/or randomly oriented crystals were observed in the guppy and the axolotl. In situ hybridization using a full-length mouse probe for amelogenin mRNA resulted in amelogenin specific signals in mouse, opossum, gecko, frog, axolotl, and shark. Using immunohistochemistry, amelogenin and tuftelin enamel proteins were detected in the enamel organ of many species investigated, but tuftelin epitopes were also found in other tissues. The anti-M179 antibody, however, did not react with the guppy and axolotl enameloid matrix. We conclude that basic features of vertebrate enamel/enameloid formation such as the presence of enamel proteins or the mineral deposition along the dentin-enamel junction were highly conserved in vertebrates. There were also differences in terms of enamel protein distribution and mineral organization between the vertebrates lineages. Our findings indicated a correlation between the presence of amelogenins and the presence of long and parallel hydroxyapatite crystals in tetrapods and shark.
Keywords:amelogenin  in situ  electron microscopy  evolution  enameloid  adameloid
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号