首页 | 本学科首页   官方微博 | 高级检索  
     

催化裂化外取热器传热与流动特性的大型冷模实验
引用本文:孙富伟,张永民,卢春喜,赵岚. 催化裂化外取热器传热与流动特性的大型冷模实验[J]. 石油学报(石油加工), 2013, 29(4): 633-640. DOI: 10.3969/j.issn.1001-8719.2013.04.013
作者姓名:孙富伟  张永民  卢春喜  赵岚
作者单位:1. 中国石油大学 重质油国家重点实验室, 北京 102249; 2. 中国昆仑工程公司,北京 100037; 3. 中国石油 辽河石化公司,辽宁 盘锦 124022
基金项目:国家自然科学基金项目,国家科技支撑计划子课题项目,国家973子课题项目,新世纪优秀人才支持计划项目,中国石油大学基金项目
摘    要:为了深入认识催化裂化外取热器内的传热和流动特性,在1套Ø500 mm×3.0 m、内设9根竖直翅片取热管的大型催化裂化外取热器冷态模型中,采用和工业装置类似的传热机制,测量了不同操作条件下外取热器内取热管传热系数的变化规律,并结合床层密度轴、径向变化规律进行了分析。结果表明,取热管传热系数随表观气速(u)增大呈现先增大后减小的趋势,峰值点出现在0.4 m/s时,这一趋势和床层从鼓泡到湍动的流域转变密切相关,工业设计中可以选用床层的起始湍动速度作为最佳操作气速;由于中心区域气泡和颗粒更为强烈的运动,因此中心处取热管的传热系数显著高于边壁区域取热管的传热系数,和床层中心稀、边壁浓的床层密度径向分布相对应;随着床层高度的不断降低,取热管传热系数呈现单调下降的趋势,因此改变床层高度可以作为调节外取热器取热负荷的一个有效手段。

关 键 词:外取热器  传热系数  流动  流化床  催化裂化  
收稿时间:2012-09-14

Large Cold-Model Experiment on Heat Transfer and Hydrodynamics of an FCC External Catalyst Cooler
SUN Fuwei , ZHANG Yongmin , LU Chunxi , ZHAO Lan. Large Cold-Model Experiment on Heat Transfer and Hydrodynamics of an FCC External Catalyst Cooler[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(4): 633-640. DOI: 10.3969/j.issn.1001-8719.2013.04.013
Authors:SUN Fuwei    ZHANG Yongmin    LU Chunxi    ZHAO Lan
Affiliation:1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; 2. China Kunlun Contracting & Engineering Corporation, Beijing 100037, China; 3. Liaohe Petrochemical Company, CNPC, Panji 124022, China
Abstract:In order to obtain deeper insights on the heat transfer properties and hydrodynamics of FCC external catalyst cooler, a large cold fluidized-bed model (Ø500 mm×3.0 m) with 9 vertical finned heat exchange tubes was established. With a similar heat transfer mechanism adopted in commercial units, the heat transfer coefficient changes of heat exchange tube was measured and analyzed based on the bed density changes along axial and radial direction. The experimental results indicated that, as superficial gas velocity increased, the heat transfer coefficient first increased and then decreased at 0.4 m/s, which is related to the flow regime transition from bubbling to turbulent regime. In industrial design, the predicted onset turbulent velocity can be adopted as the optimum operating gas velocity. Due to stronger bubble and particle movement, the heat transfer coefficient of heat exchange tube in the central bed was higher than that in the side bed, which agreed with the measured radial bed density profiles. As heat transfer coefficient decreased monotonously with the decrease of bed height, changing bed height can be an effective measure to change the heat removal load of an industrial external catalyst cooler.
Keywords:external catalyst cooler  heat transfer coefficient  hydrodynamics  fluidized bed  FCC
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《石油学报(石油加工)》浏览原始摘要信息
点击此处可从《石油学报(石油加工)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号