首页 | 本学科首页   官方微博 | 高级检索  
     


Review of waste glass corrosion and associated radionuclide release as a part of safety assesment of entire disposal system
Authors:Y. Inagaki   H. Furuya   K. Idemitsu  T. Arima
Affiliation:

Dept. of Nucl. Eng., Kyushu University, Fukuoka 812-81, Japan

Abstract:Current knowledge on high-level nuclear waste glass corrosion is summarized, and remaining problems are discussed for meaningful predictions of the glass corrosion and associated radionuclide release as a part of safety assessment of entire disposal system. In recent years, much progress has been made in understanding the mechanism of waste glass corrosion in aqueous environments. Glass corrosion models based on the mechanism have been developed for predicting the long-term glass performance, and they are incorporated as part of radionuclide source term in safety assessments of the disposal system. However, these results have not yet allowed meaningful predictions for the long-term release of individual radionuclides from the glass in repository environments, because mechanism of the long-term glass corrosion has not been fully understood and solubilities of actinoids and fission products under disposal conditions are rather uncertain. In addition, the most serious problem is that the effects of various reactions and interactions occurring in the engineered barrier system, such as corrosion of overpack, alteration of backfill and chemical interactions of the released glass constituents with them have not been fully coupled with the glass performance. These reactions may be dominant processes controlling the glass corrosion and associated radionuclide release for the long-term. For the meaningful predictions, we must evaluate the waste glass performance in combination with the effects of various reactions and interactions occurring in the engineered barrier system on the basis of fully understanding of the chemical and geochemical mechanisms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号