首页 | 本学科首页   官方微博 | 高级检索  
     

嵌入注意力机制的轻量级钢筋检测网络
作者姓名:李姚舜  刘黎志
作者单位:智能机器人湖北省重点实验室(武汉工程大学),武汉 430205
基金项目:湖北省教育厅科学研究计划指导性项目(B2017051);智能机器人湖北省重点实验室开放基金资助项目(HBIRL202002)
摘    要:智慧工地中的设备内存和计算能力有限,在现场的设备上通过目标检测对钢筋进行实时检测具有很大的难度,而且其钢筋检测速度慢、模型部署成本高。针对这些问题,在YOLOv3网络的基础上,提出了一个嵌入注意力机制的轻量级钢筋检测网络RebarNet。首先,利用残差块作为网络的基本单元来构建特征提取结构,并用其提取局部和上下文信息;其次,在残差块中添加通道注意力(CA)模块和空间注意力(SA)模块,以调整特征图的注意力权重,并提升网络提取特征的能力;然后,采用特征金字塔融合模块,以增大网络的感受野,并优化中等钢筋图像的提取效果;最后,输出经过8倍下采样后的52×52通道的特征图用于后处理和钢筋检测。实验结果表明,所提网络的参数量仅为Darknet53网络的5%,在钢筋测试集上以106.8 FPS的速度达到了92.7%的mAP。与现有的EfficientDet、SSD、CenterNet、RetinaNet、Faster RCNN、YOLOv3、YOLOv4和YOLOv5m等8个目标检测网络相比,RebarNet具有更短的训练时间(24.5 s)、最低的显存占用(1 956 MB)、最小的模型权重文件(13 MB)。与目前效果最好的YOLOv5m网络相比,RebarNet的mAP略低0.4个百分点,然而其检测速度上升了48 FPS,是YOLOv5m网络的1.8倍。以上结果表明,所提出的网络有助于完成智慧工地中要求实现的高效、准确的钢筋检测任务。

关 键 词:钢筋检测  YOLOv3  注意力机制  特征金字塔  轻量级网络  
收稿时间:2021-07-01
修稿时间:2021-09-13
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号