首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像翻转变换的对抗样本生成方法
作者姓名:杨博  张恒巍  李哲铭  徐开勇
作者单位:中国人民解放军战略支援部队信息工程大学,郑州 450001
中国人民解放军陆军参谋部,北京 100000
基金项目:国家重点研发计划项目(2017YFB0801900)
摘    要:面对对抗样本的攻击,深度神经网络是脆弱的。对抗样本是在原始输入图像上添加人眼几乎不可见的噪声生成的,从而使深度神经网络误分类并带来安全威胁。因此在深度神经网络部署前,对抗性攻击是评估模型鲁棒性的重要方法。然而,在黑盒情况下,对抗样本的攻击成功率还有待提高,即对抗样本的可迁移性有待提升。针对上述情况,提出基于图像翻转变换的对抗样本生成方法——FT-MI-FGSM(Flipping Transformation Momentum Iterative Fast Gradient Sign Method)。首先,从数据增强的角度出发,在对抗样本生成过程的每次迭代中,对原始输入图像随机翻转变换;然后,计算变换后图像的梯度;最后,根据梯度生成对抗样本以减轻对抗样本生成过程中的过拟合,并提升对抗样本的可迁移性。此外,通过使用攻击集成模型的方法,进一步提高对抗样本的可迁移性。在ImageNet数据集上验证了所提方法的有效性。相较于I-FGSM(Iterative Fast Gradient Sign Method)和MI-FGSM(Momentum I-FGSM),在攻击集成模型设置下,FT-MI-FGSM在对抗训练网络上的平均黑盒攻击成功率分别提升了26.0和8.4个百分点。

关 键 词:图像翻转变换  对抗样本  黑盒攻击  深度神经网络  可迁移性  
收稿时间:2021-06-10
修稿时间:2021-10-12
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号