首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征选择和组合模型的短期电力负荷预测
引用本文:徐宇颂,邹山花,卢先领. 基于特征选择和组合模型的短期电力负荷预测[J]. 中国电力, 2022, 55(7): 121-127. DOI: 10.11930/j.issn.1004-9649.202111045
作者姓名:徐宇颂  邹山花  卢先领
作者单位:1. 江南大学 “轻工过程先进控制”教育部重点实验室,江苏 无锡 214122;2. 江南大学 物联网工程学院,江苏 无锡 214122;3. 江苏省物联网应用技术重点建设实验室,江苏 无锡 214100
基金项目:国家自然科学基金资助项目(61573167);教育部科技发展中心“云数融合科教创新”基金资助项目(2017A13055)。
摘    要:提出基于特征选择和组合模型的短期电力负荷预测方法。首先将特征向量按特点分为2类,分别使用斯皮尔曼相关系数、最大相关最小冗余算法进行选择,依据贝叶斯信息量准则确定最优特征向量维度。然后使用3个不同的核函数建立单核递归支持向量回归模型并完成预测。最后构建神经网络,进行实验分析。仿真结果表明所提方法具有较高的预测精度与鲁棒性。

关 键 词:短期负荷预测  支持向量回归  浅层神经网络  组合模型  
收稿时间:2021-11-10

Short-Term Load Forecasting Based on Feature Selection and Combination Model
XU Yusong,ZOU Shanhua,LU Xianling. Short-Term Load Forecasting Based on Feature Selection and Combination Model[J]. Electric Power, 2022, 55(7): 121-127. DOI: 10.11930/j.issn.1004-9649.202111045
Authors:XU Yusong  ZOU Shanhua  LU Xianling
Affiliation:1. Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China;2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;3. Jiangsu Key Construction Laboratory of IoT Application Technology, Wuxi 214100, China
Abstract:A short-term load forecasting method based on feature selection and combination model is proposed. At first, the method divides the feature vectors into two sets according to the individual characteristics. Spearman rank-order correlation coefficient and max-relevance & min-redundancy algorithm are individually employed for selection. Bayesian information criterion is used to get the dimension of the optimal feature vector. And then, three different simple-kernel based support vector regression models are built using three kernel functions respectively and complete prediction. Finally, a neural network is set up for experimental analysis. The simulation results show that the proposed combination model has a great high forecasting accuracy and robustness.
Keywords:short-term load forecasting  support vector regression  shallow neural network  combination model  
点击此处可从《中国电力》浏览原始摘要信息
点击此处可从《中国电力》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号