首页 | 本学科首页   官方微博 | 高级检索  
     

基于瓶颈感知的多级反馈队列Coflow调度机制
引用本文:都繁杰,李静,郭志勇,任颖文,尹晓宇,董小菱. 基于瓶颈感知的多级反馈队列Coflow调度机制[J]. 计算机工程, 2022, 48(10): 193. DOI: 10.19678/j.issn.1000-3428.0062472
作者姓名:都繁杰  李静  郭志勇  任颖文  尹晓宇  董小菱
作者单位:南京航空航天大学 计算机科学与技术学院,南京 211106;国家电网有限公司信息通信分公司,北京 100761;国网安徽省电力有限公司信息通信分公司,合肥 231299
基金项目:国家电网有限公司科技项目“业务应用改造上云与全链路运行分析技术研究”(SGAHXTOOXYQT2100008)。
摘    要:Coflow作为并行计算框架的典型流量模型,降低Coflow的完成时间(CCT)成为云计算领域的研究热点。现有Coflow调度机制未考虑云数据中心内网络瓶颈问题,容易造成网络拥塞,导致CCT增加。针对该问题,构建基于瓶颈感知的Coflow调度机制Bamq。利用Lagrange对偶优化Coflow调度模型,以加快Coflow流速并增大吞吐量,从而降低CCT。通过设计多级反馈队列机制,降低吞吐量对网络拥塞产生的影响,根据已发流的大小、宽度和流速信息,构建瓶颈因子以动态调整多级队列的优先级,实现拥塞感知,提高Coflow调度性能。在Facebook真实数据集上进行实验,结果表明,相比Baraat、Varys、Aalo机制,该机制的CCT平均缩短21.3%,吞吐量平均提高17.9%,能够有效提高链路的利用率。

关 键 词:Coflow调度  多级反馈队列  队列稳定性  流量调度  云数据中心
收稿时间:2021-08-25
修稿时间:2021-10-18

Coflow Scheduling Mechanism for Multi-Level Feedback Queue Based on Bottleneck Perception
DU Fanjie,LI Jing,GUO Zhiyong,REN Yingwen,YIN Xiaoyu,DONG Xiaoling. Coflow Scheduling Mechanism for Multi-Level Feedback Queue Based on Bottleneck Perception[J]. Computer Engineering, 2022, 48(10): 193. DOI: 10.19678/j.issn.1000-3428.0062472
Authors:DU Fanjie  LI Jing  GUO Zhiyong  REN Yingwen  YIN Xiaoyu  DONG Xiaoling
Affiliation:1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;2. Information and Communication Branch of State Grid Corporation, Beijing 100761, China;3. Information and Communication Branch of State Grid Anhui Electric Power Co., Ltd., Hefei 231299, China
Abstract:Coflow is a typical traffic model based on a parallel computing framework.Reducing the Coflow Completion Time (CCT) has become a popular research topic in cloud computing.The existing Coflow scheduling mechanism does not consider the network bottleneck in the cloud data center, which easily causes network congestion and increases the CCT.Hence, Coflow scheduling mechanism, Bamq, based on bottleneck perception is constructed.The Lagrange duality is used to optimize the Coflow scheduling model such that the Coflow flow rate and throughput are increased, whereas the CCT is reduced.The multi-level feedback queue mechanism reduces the effect of throughput on network congestion.Based on the size, width, and flow rate of the sent flow, the bottleneck factor is constructed to dynamically adjust the priority of multi-level queue, realize congestion perception, and enhance the performance of Coflow scheduling.Experiments on the Facebook dataset show that compared with the Baraat, Varys and Aalo mechanisms, the CCT of this mechanism is reduced by 21.3%, whereas the throughput is increased by 17.9% on average.The proposed mechanism can significantly reduce the CCT and effectively improve link utilization.
Keywords:Coflow scheduling  multi-level feedback queue  queue stability  flow scheduling  cloud data center  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号