首页 | 本学科首页   官方微博 | 高级检索  
     

基于多时相协同变化检测的耕地撂荒遥感监测
引用本文:韦中晖,靳海亮,顾晓鹤,杨英茹,王庚泽,潘瑜春. 基于多时相协同变化检测的耕地撂荒遥感监测[J]. 遥感技术与应用, 2022, 37(3): 539-549. DOI: 10.11873/j.issn.1004-0323.2022.3.0539
作者姓名:韦中晖  靳海亮  顾晓鹤  杨英茹  王庚泽  潘瑜春
作者单位:1.河南理工大学 测绘与国土信息工程学院,河南 焦作 454000;2.北京市农林科学院信息技术研究中心,北京 100097;3.石家庄市农林科学研究院,河北 石家庄 050041
基金项目:陕西省重点研发计划(2022ZDLNY02-10)
摘    要:针对地表覆被复杂、地块破碎等原因导致的撂荒地提取精度较低问题,提出一种基于多时相协同变化检测的耕地撂荒信息提取方法。以河北省石家庄市鹿泉区为研究区,采用Sentinel-2A和Landsat 7多光谱影像,在野外样本的支持下,分析耕地各种覆盖类型的归一化植被指数(Normalized Difference Vegetation Index,NDVI)季相变化规律,以季节性撂荒、常年性撂荒、冬小麦、多年生园地为分类体系,构建多时相协同变化检测模型,开展研究区耕地撂荒状态遥感监测。研究结果表明:基于Sentinel-2A影像的季节性撂荒和常年撂荒耕地的分类精度分别为95.83%和96.55%;基于Landsat 7影像的季节性撂荒和常年撂荒耕地的分类精度分别为91.67%和93.10%;2019年鹿泉区季节性撂荒占耕地面积的4.7%,常年撂荒耕地占7.1%。利用该方法能够快速、准确地获取研究区耕地空间分布、面积等信息,对于不同分辨率的影像均具有较好的撂荒地提取精度。

关 键 词:耕地撂荒  Sentinel-2A  NDVI  多时相变化检测  遥感监测
收稿时间:2021-01-06

Remote Sensing Monitoring of Cultivated Land Abandonment based on Multi-temporal Collaborative Change Detection
Zhonghui Wei,Hailiang Jin,Xiaohe Gu,Yingru Yang,Gengze Wang,Yuchun Pan. Remote Sensing Monitoring of Cultivated Land Abandonment based on Multi-temporal Collaborative Change Detection[J]. Remote Sensing Technology and Application, 2022, 37(3): 539-549. DOI: 10.11873/j.issn.1004-0323.2022.3.0539
Authors:Zhonghui Wei  Hailiang Jin  Xiaohe Gu  Yingru Yang  Gengze Wang  Yuchun Pan
Abstract:Aiming at the problem of low precision of abandoned land extraction caused by complex land cover and broken land, a method of abandoned land information extraction based on multi temporal collaborative change detection was proposed. Taking Luquan District, Shijiazhuang City, Hebei Province as the research area, the Normalized Difference Vegetation Index (NDVI) of various types of cultivated land cover was analyzed by using sentinel 2a and Landsat 7 multispectral images and supported by field samples Based on the classification system of seasonal abandonment, perennial abandonment, winter wheat and perennial garden, a multi temporal collaborative change detection model was constructed to carry out remote sensing monitoring of cultivated land abandonment in the study area. The results show that the classification accuracy of seasonal and perennial abandoned farmland based on Sentinel 2A image is 95.83% and 96.55% respectively; the classification accuracy of seasonal and perennial abandoned farmland based on Landsat 7 image is 91.67% and 93.10% respectively; the seasonal abandoned farmland accounts for 4.7% and perennial abandoned farmland accounts for 7.1% in Luquan District in 2019. This method can quickly and accurately obtain the spatial distribution and area information of cultivated land in the study area, and has good extraction accuracy for abandoned land in different resolution images.
Keywords:Cultivated land abandonment  Sentinel-2A  NDVI  Multi temporal change detection  Remote sensing monitoring  
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号