首页 | 本学科首页   官方微博 | 高级检索  
     

RhO2修饰BiVO4薄膜光阳极的制备及其光电催化分解水性能
引用本文:胡越,安琳,韩鑫,侯成义,王宏志,李耀刚,张青红. RhO2修饰BiVO4薄膜光阳极的制备及其光电催化分解水性能[J]. 无机材料学报, 2022, 37(8): 873-882. DOI: 10.15541/jim20210798
作者姓名:胡越  安琳  韩鑫  侯成义  王宏志  李耀刚  张青红
作者单位:1.东华大学 材料科学与工程学院, 纤维材料改性国家重点实验室, 上海 201620
2.华东理工大学 化工学院, 化学工程国家重点实验室, 上海 200237
3.东华大学 材料科学与工程学院, 教育部先进玻璃制造技术工程中心, 上海 201620
基金项目:国家自然科学基金(51572046)
摘    要:钒酸铋是最具有光电催化应用潜力的水分解光电阳极之一, 但由于表面缓慢的动力学反应速率, 其光电催化效率仍不理想。本研究通过浸渍法在BiVO4薄膜光阳极上负载纳米RhO2助催化剂, 研究RhO2负载量对BiVO4光阳极光电催化性能的影响规律及其机理。晶粒尺寸10~25 nm的RhO2均匀负载在颗粒尺寸100~250 nm、厚度约为400 nm的BiVO4光阳极薄膜表面。考虑到贵金属铑的昂贵成本, RhO2的最佳负载量为质量分数1.65%, 在偏压1.23 V (vs. RHE)、1.0 mol/L Na2SO3溶液中(pH8.5)AM 1.5模拟可见光照射下, 光电流密度达3.81 mA·cm-2, 相较纯BiVO4提升了10.58倍。在没有有机牺牲剂的条件下, 光阳极同时析出了氢气和氧气, 两者比例接近2 : 1, 产氧速率为8.22 μmol/(h·cm2)。负载RhO2有效改善了光阳极的表面水氧化动力学, 使光生空穴更快与电解质溶液进行水氧化反应, 抑制光生载流子复合, 从而显著提升光电催化性能。另外, 负载RhO2后, 空穴更容易从光阳极表面被有效提取到电解质溶液中, 减少其在光阳极表面积累, 从而使BiVO4/RhO2(1.65%)光阳极可持续稳定工作10 h以上。

关 键 词:钒酸铋  氧化铑  助催化剂  光电催化  分解水  
收稿时间:2022-12-29
修稿时间:2022-03-09

RhO2 Modified BiVO4 Thin Film Photoanodes: Preparation and Photoelectrocatalytic Water Splitting Performance
HU Yue,AN Lin,HAN Xin,HOU Chengyi,WANG Hongzhi,LI Yaogang,ZHANG Qinghong. RhO2 Modified BiVO4 Thin Film Photoanodes: Preparation and Photoelectrocatalytic Water Splitting Performance[J]. Journal of Inorganic Materials, 2022, 37(8): 873-882. DOI: 10.15541/jim20210798
Authors:HU Yue  AN Lin  HAN Xin  HOU Chengyi  WANG Hongzhi  LI Yaogang  ZHANG Qinghong
Abstract:Bismuth vanadate is one of the most promising photoanodes for photoelectrocatalytic water splitting, however, its photoelectrocatalytic efficiency is still not ideal due to its sluggish kinetic reaction rate. The RhO2 cocatalyst was loaded on the BiVO4 thin film photoanode by impregnation method, and the photoelectrochenucal performance of the BiVO4 photoanode with different RhO2 loadings was studied. RhO2 with grain size of 10-25 nm was uniformly loaded on the BiVO4 film with grain size of 100-250 nm and thickness of 400 nm. The BiVO4 photoanode with 1.65% RhO2 (mass percent) showed the best comprehensive performance, of which the visible-light photocurrent density reached 3.81 mA·cm-2 under 1.23 V (vs. RHE) in 1.0 mol/L Na2SO3 (pH8.5) electrolyte, which was 10.58 times higher than that of bare BiVO4. In the absence of any sacrificial agent, the photoanodes produced hydrogen and oxygen at the same time at the ratio of close to 2 : 1, and the oxygen production rate was 8.22 µmol/(h·cm2). RhO2 loading effectively improved the surface water oxidation kinetics, so that photogenerated holes could undergo water oxidation reaction more quickly. Meanwhile, the photogenerated carrier recombination was inhibited, significantly improving the photoelectrocatalytic performance. In addition, since holes were more easily extracted from the surface of photoanode into electrolyte solution in the presence of RhO2 cocatalyst, reducing accumulation on the surface of the photoanode, the BiVO4/RhO2 (1.65%) photoanode achieved excellent stability for more than 10 h.
Keywords:BiVO4  RhO2  cocatalyst  photoelectrocatalysis  water splitting  
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号