首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络和Transformer的手写体英文文本识别
引用本文:张显杰,张之明. 基于卷积神经网络和Transformer的手写体英文文本识别[J]. 计算机应用, 2022, 42(8): 2394-2400. DOI: 10.11772/j.issn.1001-9081.2021091564
作者姓名:张显杰  张之明
作者单位:武警工程大学 信息工程学院,西安 710086
武警工程大学 研究生大队,西安 710086
摘    要:手写体文本识别技术可以将手写文档转录成可编辑的数字文档。但由于手写的书写风格迥异、文档结构千变万化和字符分割识别精度不高等问题,基于神经网络的手写体英文文本识别仍面临着许多挑战。针对上述问题,提出基于卷积神经网络(CNN)和Transformer的手写体英文文本识别模型。首先利用CNN从输入图像中提取特征,而后将特征输入到Transformer编码器中得到特征序列每一帧的预测,最后经过链接时序分类(CTC)解码器获得最终的预测结果。在公开的IAM(Institut für Angewandte Mathematik)手写体英文单词数据集上进行了大量的实验结果表明,该模型获得了3.60%的字符错误率(CER)和12.70%的单词错误率(WER),验证了所提模型的可行性。

关 键 词:手写体英文文本识别  深度学习  卷积神经网络  Transformer  链接时序分类  注意力  无分割  
收稿时间:2021-09-03
修稿时间:2022-01-05

Handwritten English text recognition based on convolutional neural network and Transformer
Xianjie ZHANG,Zhiming ZHANG. Handwritten English text recognition based on convolutional neural network and Transformer[J]. Journal of Computer Applications, 2022, 42(8): 2394-2400. DOI: 10.11772/j.issn.1001-9081.2021091564
Authors:Xianjie ZHANG  Zhiming ZHANG
Affiliation:College of Information Engineering,Engineering University of PAP,Xi’an Shaanxi 710086,China
Postgraduate Brigade,Engineering University of PAP,Xi’an Shaanxi 710086,China
Abstract:Handwritten text recognition technology can transcribe handwritten documents into editable digital documents. However, due to the problems of different writing styles, ever-changing document structures and low accuracy of character segmentation recognition, handwritten English text recognition based on neural networks still faces many challenges. To solve the above problems, a handwritten English text recognition model based on Convolutional Neural Network (CNN) and Transformer was proposed. Firstly, CNN was used to extract features from the input image. Then, the features were input into the Transformer encoder to obtain the prediction of each frame of the feature sequence. Finally, the Connectionist Temporal Classification (CTC) decoder was used to obtain the final prediction result. A large number of experiments were conducted on the public Institut für Angewandte Mathematik (IAM) handwritten English word dataset. Experimental results show that this model obtains a Character Error Rate (CER) of 3.60% and a Word Error Rate (WER) of 12.70%, which verify the feasibility of the proposed model.
Keywords:handwritten English text recognition  deep learning  Convolutional Neural Network (CNN)  Transformer  Connectionist Temporal Classification (CTC)  attention  segmentation-free  
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号